1. J. Andres, Several remarks to problem of Moser and conjecture of Mawhin, Boll. U. M. I. (7), 7-A (1993), 377-386.
2. J. Andres, Further remarks on problem of Moser and conjecture of Mawhin, To appear in Topol. Meth. Nonlin. Anal., 6, 1 (1995).
3. F. Battelli, K.J. Palmer, Chaos in the Duffing equation, J. Diff. Eqns, 101, 2 (1993), 276-301.
4. J.-M. Belley, G. Fournier, K. Saadi Drissi, Almost periodic weak solutions to forced pendulum type equations without friction, Aequationes Math., 44, 1 (1992), 100-108.
5. V.N. Belykh, N.F. Pedersen, O.H. Soerenson, Shunted-Josephson-junction model, Phys. Rev. B, 16, 11 (1977), 4853-4871.
6. A. Benseny, C. Olivé, High precision angles between invariant manifolds for rapidly forced Hamiltonian systems, In: Internat. Conf. on Diff. Eqns, Barcelona 1991 (Ed. by C. Perelló, C. Simo, J. Solà-Morales), World Scientific, Singapore, 1993, 315-319.
7. L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Springer, Berlin, 1959.
8. A. Delshams, T.M. Seara, Splitting of separatrices in rapidly forced systems, In: Internat. Conf. on Diff. Eqns, Barcelona 1991 (Ed. by C. Perelló, C. Simo, J. Solà-Morales), World Scientific, Singapore, 1993, 103-113.
9. F. Donati, Sur l'existence de quatre solutions périodiques pour l'équation du pendule forcé, C. R. Acad. Sci. Paris, 317, 1 (1993), 667-672.
10. F. Donati, Some remarks on periodic solutions of the forced pendulum equation, Diff. and Integral Eqns., 8, 1 (1995), 141-149.
11. I. Goldrish, Y. Imry, G. Wassenman, E. Ben-Jacob, Studies of the intermittent-type chaos in Ac- and Dc-driven Josephson junction, Phys. Rev. B, 29, 3 (1984), 1218-1231.
12. D.R. He, W.J. Yeh, Y.H. Kao, Transition from quasiperiodicity to chaos in a Josephson-junction analog, Phys. Rev. B, 30 (1984), 197.
13. K. Hocket, P. Holmes, Nonlinear oscillations, iterated maps, symbolic dynamics, and knotted orbits, Proceed. of the IEEE, 75, 8 (1987), 1071-1080.
14. P. Holmes, Poincaré, celestial mechanics, dynamical-systems theory and "chaos", Phys. Rep. 193, 3 (1990), 137-163.
15. P. Holmes, J. Marsden, J. Scheurle, Exponentially small splitting of separatrices with applications, Contemp. Maths, 89 (1988), 213-244.
16. B.A. Huberman, J.D. Crutchfield, N.H. Packard, Noise phenomena in Josephson junctions, Appl. Phys. Lett., 37 (1980), 750-772.
17. T.J. Kaper, S. Wiggins, On the structure of separatrix-swept regions in singularly-perturbed Hamiltonian systems, Diff. and Integral Eqns, 5, 6 (1992), 1363-1381.
18. R.L. Kautz, Chaotic states of Rf-biased Josephson junction, J. Appl. Phys., 52 (1981), 6241.
19. M. Levi, Beating modes in the Josephson junction, In: Chaos in Nonlinear Dynamical Systems (Ed. J. Chandra), SIAM, Philadelphia, 1984, 56-73.
20. M. Levi, F.C. Hoppenstaedt, W.L. Miranker, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978), 167-198.
21. C. Olech, Asymptotic behavior of solutions of second order differential equations, Bull. Acad. Polon. Sci., 7 (1959), 319-326.
22. R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. U. M. I., (7), 3-B (1989), 533-546.
23. R. Ortega, Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc., 2, 42 (1990), 505-516.
24. R. Ortega, The first interval of stability of a periodic equation of Duffing type, Proceed. of the Amer. Math. Soc., 115, 4 (1992), 1061-1067.
25. K.J. Palmer, Exponential dichotomy and transversal homoclinic points, J. Diff. Eqns, 55 (1984), 225-256.
26. R. Reissig, Continua of periodic solutions of the Liénard equation, In: Constructive methods for nonlinear boundary value problems and nonlinear oscillations (Ed. J. Albrecht, L. Collatz, K. Kirchgässner), INSM 48, Birkhäuser, Basel, 1979, 126-133.
27. J.A. Sanders, The (driven) Josephson equation: an exercise in asymptotics, In: Asymptotic analysis II (Ed. F. Verhulst), LNM 985, Springer, Berlin, 1983.
28. G. Sansone, L'équation θ" + f(θ,α)h(θ') = g(θ) + p(t), J. Math. Pures Appl., 9, 43 (1964), 149-175.
29. G. Sansone, Existence et stabilité asymptotique uniforme d'une solution périodique de l'équation θ" + f(θ,α)h(θ') = g(θ) + p(t), In: Les vibration forcées dans les systèmes non-lineaires. Colloq. Internat, du Centre National de la Rech. Sci. no 148 (Marseille, September 1964), 1965, 97-106.
30. B.V. Schmitt, N. Sari, Solutions périodiques paires et harmoniques-impaires de l'équation du pendule forcé, J. Mécan. Théor. Appl., 3 (1984), 979-993.
31. B.V. Schmitt, N. Sari, Sur la structure de l'équation du pendule forcé, J. Mécan. Théor. Appl., 4, 5 (1985), 615-628.
32. G. Seifert, On stability in the large for periodic solutions of differential systems, Ann. Math., 2, 67 (1958), 83-89.
33. G. Seifert, The asymptotic behavior of solutions of pendulum type equations, Ann. Math., 1, 69 (1959), 75-87.
34. G. Tarantello, On the number of solutions for the forced pendulum equation, J. DifF. Eqns, 80 (1989), 79-93.
Google Scholar