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CONCLUDING R E M A R K S TO P R O B L E M 
OF MOSER AND C O N J E C T U R E OF MAWHIN 

J A N ANDRES* 

Abstract. Uniqueness, exact multiplicity and stability of periodic solutions 
to the periodically forced pendulum equation are discussed. All of this can 
be considered as a further specification of contributions to the problem of 
Moser and especially Mawhin's conjecture. 

1. Introduction 

This paper is the final part of our studies concerning the pendulum equa
tion 

(1) x" + ax' + 6sinx = p(t), 

where a, b are positive constants and p(t) is continuous T-periodic with a zero 
mean value. In two previous parts [1], [2], we have been already interested in 
the Lagrange stability (Moser's problem), existence of harmonies for all a > 0 
(Mawhin's conjecture), multiplicity results for T-periodić solutions with T 
being arbitrarily large, etc. We have also pointed out that the requirement 
of a periodic regime in general could only lead to the enlarged class of pure 
periodic oscillations (originally assumed by J . Mawhin) by the admissibility 
of subharmonics of the second kind (i.e. running ArT-periodic solutions, 
k E Z). The relationship between two problems from the title was certainly 
clarified as well. 
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Thus, taking into account the appropriate results, we can, for example, 
establish the phase locking process, when every trajectory of (1) is asymp
totically periodic, provided (see [1], [23]) 

a > max zvb, + n 2 (26 + 7T(6 + P ) ) 

where 

P := max \p(t)\ , Po := max / pit) dt 
i€[0,T] tut2€[0,T] Jtl 

This is the optimum from the practical point of view, and there appears the 
natural question whether or not the above condition can be anyhow weaken 
to realize the same behaviour which is essential in the automatic control 
theory. Although we do not yet know the answer in general, the majority 
of our investigations is intentionally focussed to the case, when a < 2y/b 
(a « 2y/b corresponds to the critical value of the damping; cf. [2] and the 
references therein). 

If only 

yi) a>[b + r) 2(26 + 7r(6 + P)) 

then the Lagrange stability of (1) takes place (see [1]) which improves the 
old results of G. Seifert [33] and G. Sansone [28]. Observe that condition 
(2) can be schematically expressed in the form a > y/b/(2 + n) + e\, while 
those in [33] and [28] as a > 2\/b + e2 and 

a > , ^ + £3=0.68^ + e3, 
max a; cos a; 

where 
lim e, ; 0 for j = 1,2,3, 

(=*Po-+0) 

respectively. Although (2) is not necessary (see [1]), the appropriate sharpest 
or at least better estimate is not yet known to us. 

If, moreover, (one can readily check that the following conditions im-
ply (2)) 

(3) a 
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where 

A {A 0 + [A2, + +3(6 + P) + 6aP0(b + P) + 5a2P& } , 

A 0 :=aP0 + 2b + P, 

then equation (1) has at least (see [2]) two geometrically distinct T-periodic 
solutions with T being arbitrarily large. 

It, furthermore, follows from the investigations in [1], [2] that the slightly 
stronger condition than (3), namely 

(4) T + A £ l -
implies the existence of at least two T-periodic solutions xi(t), X2(t) such 
that jxi(^)| < § and \x2(t) — n\ < | , while all the other geometrically dis
tinct T-periodic solutions are bounded in the same way, which gives a good 
opportunity to prove, under some additional restrictions, the uniqueness of 
these solutions on the given domains, and consequently the exact multiplicity 
result. 

Hence, this is our first purpose which will be examined in Section 2. The 
second aim here is to decide if under the same or similar assumptions xi (t) 
is asymptotically stable and x<i (t) unstable in the sense of Liapunov, which 
will be treated in Section 3. 

2. Uniqueness and exact multiplicity results 

Since we already know (see above) that for (4) at least two T-periodic 
solutions x\{t), X2(t) of (1) exist such that |xi(i)| < \ and |#2(ź) — "1 < § > 
we can immediately employ the related uniqueness results for the Duffing-
type equations as, for example, the one in [24], saying that 

a 2 

(5) 6 < — (1 + £ 2 ) , where £ 0 = 3.34354... 

(for the precise definition of £o see [24]) implies the uniqueness of xi(t) on 
the domain |a:| < | . This condition does not obviously depend on the length 
of the period T which is very convenient for us. 

In the following, using the standard approach (cf. e.g. [26]), we will there
fore show that the sole condition (4) implies the uniqueness of X2(t) on the 
domain \x — TT | < | and that (5) can be replaced by the inequality 

(6) 
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in order to get the exact multiplicity results in the both cases related to (5) 
and (6). If there are namely some other geometrically distinct harmonics, 
then they must be bounded in the same way as pointed out above. 

For this goal, instead of (1), consider the equations 

(1*) x" + ax' + b sin* x = p(t), 

where 

- { 
and 

(1*) x" + ax' + 6sin» x = p(t), 

sin(x + 7r) for |x| < § , 
sin* x := < 2 

•^xsgnx for \x\ > f, 

where 
sinx for |x| < § 

sin* i* x := J ^isgna; for |x| > | . 

Assume that equation (1*) or (1») has two (nontrivial) T-periodic solu
tions x(i) and [x(t) + y(i)], where y(t) ^ 0 . Then we have 

(7*) y"(t) + ay'(t) + b[sin*{x(t) + y(t)) - sin* x(t)] = 0, 

or 

(7*) .y"(t) + ay'(t) + b[sint(x(«) + y(t)) - sin, x(t)] = 0, 

respectively. 
Since there is obviously 

(sin* x - sin* y)(x - y) < 0 for all x,y, 

we get 

rT rT 
/ y'2{t) dt = b y(t) [sin*(x(t) + y(t)) - sin* x(t)} dt < 0, 

Jo Jo 

when multiplying (7*) by y{t) and integrating the obtained identity from 0 
to T. Therefore, y'(t) = 0, i.e. y{t) must be a constant. 

Similarly, because of 

0< (x-y)(sin*x-sin*y) < (x-y)2 for x ^ y, 
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we claim that there is no interval [ti, t2], 0 < t2 — h < ^ > such that 

V(*i) = V(*2) = 0, y(t)?0 for t€(h,t2). 

Otherwise, we would arrive after multiplying (2*) by y(t) and integrating 
the obtained identity from tx to t2 at the following relation 

f 2y'2(t) dt =6 f y(t)[sm*{x(t)+y{t)) - sin* x(t)] dt 

(8) J t l J t \ 2 

<b y2(t)dt. 

Using still the well-known Wirtinger inequality, we would come by means of 
(8) to 

£ 2 y'2(t) dt < b £ y2(t) dt < b ( ^ T ^ ) 2 / 2
 y'2({) di> 

which is the contradiction for 0 < t2 — t\ < ^ , as indicated above. 
Hence, assuming moreover (6), i.e. T < 2w/Vb, there must exist a point 

t0 € [0,T] such that y{t) ̂  0 for t0 < t < t0 + T. 
Indeed. The T-periodicity of y(t) namely implies that if To is a zero point 

of y(t), then so is to + T and simultaneously there must not be any further 
zero point to between them. Otherwise, the length of one of the subintervals 
[t0,to] or [to, to+T] must have been less or equal than \ which is impossible 
as shown above. 

Therefore, we have not only 

/•to+T 
/ [sin* (x(t) + y(t)) - sin, x(t)] dt = 0 

J t0 

because of T-periodicity, but also sin*(x(<) + y{t)) = sin*x(t) because of 
monotonicity, i.e. (see (7*)) y"(t) + ay'(t) = 0, and consequently y(t) must 
only be a constant, again. 

Since in the both cases under consideration the second solution [x(t) + 
const.] as well as the first one x(t) must satisfy equations (1*) and (1*), 
respectively, which yields that sin* (x+const.) = sin* x and sin* (x+const.) = 
sin* x, i.e. y(t) = 0, we obtained the desired contradiction. 

So, we can give the following 

T H E O R E M 1. Let (4), (5) or (4), (6) be satisfied. Then equation (1) has 
exactly two geometrically distinct T-periodic solutions. 
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R E M A R K 1. One of few exact multiplicity results was recently obtained 
by G. Tarantello [34]. Her criteria however depend on the length of T which 
is not required in Theorem 1 for (4), (5). Nevertheless, it seems to be difficult 
to compare them to (4), (6). 

3. Remarks to stability of periodic solutions 

R . Ortega has proven in [23] that the sole condition a > 2s/b implies 
the existence of at least two T-periodic solutions of (1), at least one being 
asymptotically stable and another unstable. Furthermore, every bounded 
solution (see our condition (2)) converges to some T-periodic solution which 
altogether guarantees the so called phase-locking process as mentioned in 
the Introduction. 

In [22], the inequality b < o2/4 was even replaced by the weaker condition 

(9) & < « 2 + ^ 

for the same goal, but the result is of the generic nature with respect to p(t). 
Thus, the same author posed in [23] the natural question if the same 

statement can be obtained not only generically. 
Now, we will show that it is really possible, but under some additional 

restrictions, namely (4) and 

O') o<»~T^S ' 
(observe that (9') differs from (9) just by a < 2y/b). 

It is namely well-known (see e.g. [7]) that the stability analysis (in the 
small) can be performed by virtue of the first variational equation to (1), 

(10) x" + ax' + 6[cos x(t)]x = 0, 

where x(t) is a T-periodic solution under consideration. Furthermore, since 
we have for (4) that (see above) |a;i(i)| < f for x(t) = xi(t) and (\x2{t)— 7r| < 
I for x(t) = X2(t), there is cosa;i(<) > 0 and cosa^i) < 0, respectively. 

Using the asymptotic stability criterium (9') due to V. A. Yakoubovitch 
(see [7, Chapter II, Part 4.3.7]) or (5) due to R . Ortega [24] and the fact 
that equation (10) has always for x(t) = x2{t) an unbounded solution on the 
positive half-line (see e.g. [21]), we can give immediately 

T H E O R E M 2. Let (4), (5) or (4), (6) and (9') be satisfied. Then equation 
(1) has exactly two geometrically distinct T-periodic solutions, one being 
asymptotically stable and another unstable in the sense of Liapunov. 
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R E M A R K 2. Further interesting stability and convergence criteria can be 
found e.g. in the old papers by G. Seifert [32], [33] and G. Sansone [28], [29], 
where however (besides another) b> P, which itself implies the existence of 
at least two harmonics. 

R E M A R K 3. Although (because of the substitution t := — T) the assertion 
of Theorem 1 remains certainly valid for o replaced by |oj, i.e. also for the 
negative damping constant a, it cannot be said the same about Theorem 2. 

4. Epilogue 

Recently, it was proved in [4], under extremely weak assumptions, the 
existence of almost periodic solutions in the frictionless case (o = 0). One 
could be therefore interested to do the same for a ^ 0. 

In the frictionless case, it was also shown in [9] that, whatever are the 
pendulum lenght and the oscillation period T, there exists a suitable class 
of forcing terms such that the equation admits at least four geometrically 
distinct T-periodic solutions (of the first or the second kind). This nice, 
but phenomenologically not very surprising result (cf. [2] and the references 
therein), has been stimulated by the numerical studies in [30], [31] performed 
almost ten years ago. Furthermore, if the forcing term p(t) is in a certain 
ball centered in the origin of C([0,T]), i.e. with mean value not necessarily 
equal to zero, then the undamped pendulum equation has been shown in 
[10] to have at least two harmonics. 

The big attention is also devoted to the splitting of separatrices, especially 
under the influence of the rapidly oscillating forcing functions p(t), of course, 
when the amplitude of \p{t)\ is sufficiently small (see e.g. [6], [8], [15], [17] 
and the references therein). 

However, the periodically forced pendulum equation remains mainly the 
paradigm for demonstrating the various routes to chaos like period-doubling 
[18], intermittency [9], quasi-periodicity [12], etc. (see also [3], [5], [16], [25]). 

Unfortunately, there was so far no time to mention many other extremely 
interesting related results like those in [13], [14], [19], [20], [27], clarifying 
the structure of the associated phase plane in detail. 
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