1. A. Averna, T. Cardinali, Sui concetti di K-convessità (K-concavità) e di K-convessità* (K-concavità*), Riv. Mat. Univ. Parma (5) 16 (1990), 311-330.
2. F.A. Behringer, Convexity is equivalent to midpoint convexity combined with strict quasiconvexity, Optimization (ed. K.H. Elstev, Ilmenan, Germany), (to appear).
3. T. Cardinali, K. Nikodem, F. Papalini, Some results on stability and on characterization of K-convexity of set-valued functions, Annales Polonici Mathematici, LVIII.2 (1993), 185-192.
4. Z. Daróczy, Z. Páles, Convexity with given infinity weight sequences, Stochastica 11 (1987), 76-86.
5. Z. Kominek, A characterization of convex functions in linear spaces, Zeszyty Naukowe Akademii Górniczo-Hutniczej Im. Stanisława Staszica, No 1277 Opuscula Math. 5 Kraków, 1989, 71-75.
6. N. Kuhn, A note on t-convex functions, General Inequalities 5 (Proc. of the 5th International Conference on General Inequalities, Oberwolfach, 1968), 269-276.
7. A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.
8. C.T. Ng, K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), 103-108.
9. K. Nikodem, Continuity of K-convex set-valued functions, Bull. Polish Acad. Sci. Math. 35 (1986), 392-399.
10. K. Nikodem, Approximately quasiconvex functions, C. R. Math. Rep. Acad. Sci. Canada - Vol. X, No 6 (1988), 291-295.
11. K. Nikodem, On some class of midconvex functions, Annales Polonici Mathematici L (1989), 151-155.
12. K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Łódz. 559 (Rozprawy Mat. 115), Łódź 1989.
13. C.T. Ng, Functions generating Schur-convex sums, General Inequalities 5 (Proc. Oberwolfach, 1986), 533-538.
14. F. Papalini, Decomposition of a K-midconvex (K-midconcave) function in a Banach space, Riv. Mat. Univ. Parma (5) 2 (1993).
15. H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
Google Scholar