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' SOME CHARACTERIZATIONS OF FUNCTIONS
GENERATING K-SCHUR CONCAVE SUMS AND
OF K-CONCAVE SET-VALUED FUNCTIONS

-*T1ZIANA CARDINALI

Abstract. In this note we establish some characterizations of (single valu-
ed) functions, that assume values in a Banach space, generating K-Schur

- concave sums. These results improve some theorems obtained in [13] and
[11]. Moreover we prove that a set—valued function is K-~concave if and
only of it is K'—t-concave and K-quasi concave (where t is a fixed number
in (0,1)). This result improves the theorems obtained in [11], [2], [5] and
extends the theorem of {3].

1. Introduction. It is known in literature [7] that many inequalities in
R can be obtained by means of appropriate Schur-convex functions: then
‘many Authors have devoted themselves to finding some characterizations of
Schur—convex functions. C.T. Ng {13] in 1986 has proved that, if D is an
open and convex subset of R", a function f : D — R generates Schur—convex
sums if and only if it can be represented as the sum of an additive function
-and of a convex function or if and only if it is a Wright—convex function.

Later, in 1989, K. Nikodem [11] has showed that f is Wright—convex if
and only if it is mxdconvex and satisfies the followmg condltlon

fltz +(1- O)+F((1 - )z + 1) < 2mx{f(ﬂv) f(y)},
Vz,y € D and Vt € [0,1]. ‘
In more g-enera,l' linear spaces, where there is not a natural order structure
but, as it is well known, we can provide it with partially order structure

endowed with a cone K, ihéqpalities can’ bé obtained by means of K-Schur
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concave (convex) functions. The first part of this note has been devoted
to finding some characterizations of (single valued) functions generating
K-Schur concave sums. We prove (cf. Theorem 2) that, if V is a Ba-
nach space (that is partially ordered by the order structure endowed with
a normal and closed cone K of Y), every function f : D — Y, D is an
open and convex subset of R", that produces K-Schur concave sums has
the following representation '

f&)=A@)+V(2), VzeD,

where A : R® = Y is an additive function and V : D = Y is a K-
concave function. Moreover, in the same theorem, we prove that a function
f : D — Y generates K-Schur concave sums if and only if f is K-Wright
concave or if and only if it is K-midconcave and satisfies the following con-
dition .

f(tz+(1 = t)y) + f(1 - t)z + ty) € 2 co{f(2), f(y)} + K,
forall z,y€ Dandte€0,1].

Our result, in the particular case that Y = R and K = ]- o0, 0], reduces
itself to the mentioned Theorems of C.T. Ng and K. Nikodem.

In the second part of this note we obtain a characterization of K—concave
set-valued functions. This problem was studied for single-valued functions in
1989 by K. Nikodem [11] who proved that a function f, defined on an open
and convex subset of R™ and taking its values in R, is convex if and only if
is quasiconvex and midconvex. Recently F.A. Behringer [2] and Z. Kominek
[5] showed that the previous characterization of the convex functions is true
also in the more general context when the function f is defined on any
convex subset of a real vector space, not necessarily open. Later, in [3], this
result has been generalized to set-valued functions: let D be a convex subset
of a real vector space X,Y be a real topological vector space that can be
represented in the form Y = U,en(Bn — K), where (By)sen is a family of -
bounded and convex subsets of Y and K be a closed cone of Y. In these
. conditions the Authors proved that if F'is a set-valued function defined on
D and taking its values in the family of the compact (non empty) subsets of
Y, then ‘

F is K-convex < F is K-t-convex and K—quasiconvex, where t € (0, 1).

Here we obtain an a,nalogous result for the K—concave set—valued func-
tions but in the case*that Y is any real locally convex topological véctor
space (cf. here Corollary ). This theorem extends‘the Theorem proved in
[3] and, moreover, it strictly contains the mentioned results proved in [11],
(2] and [5] (cf. here Remark 5).
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Finally, we obtain a sufficient condition (cf. Theorem 4) for a set-valued
function to be K-midconcave. This result is a generalization to set-valued
functions of a result of N. Kuhn [6] stating that t-convex (single-valued)
functions are midconvex (cf. Remark 4).

2. Definitions and remarks. Let X and Y be two real topological
vector spaces (satisfying the Ty separation axiom). Given two real numbers
a, 3 and two sets S,T C Y, we put

aS+pAT ={yeY: y=as+pt, s€S, teT}

For every set A C Y, we denote by coA and by clA respectively the convex
hull of A and the closure of A. :
Aset K C Y is said to be a “cone ” if it satlsﬁes the following conditions:

K+ KCK, aK C K, Va € [0, +oo[;
moreover we say that aset A CY is “K—convex” if
tA+(1-t)ACA+K, Vvtelo,1].

A cone K C Y is said to be “normal ” if

(2.1) there exists a base V(0) of neighbourhoods of zero in Y such that:
V=(V+K)n({V-K), YV € V(0).
We denote by
(2.2) n(Y)={SCY: S#0},
(2.3) C(Y)={SCY: S compact, convex, S # 0},
‘ (24) Ck(Y)={SCY: S compact, K—convex, S # 0}

Let D be a non—empty convex subset of X and t be a fixed number of
(0,1). A set—valued function F': D — n(Y) is called “K—t-convex” if

(2.5). tF(z)+(1-t)F(y) C Fltz+ (1-t)y) + K
forall z,ye D. If t = -2- F is called “ K-midconvex”; while F is said to be
“K-convex” if (2.5) holds for every z,y € D and for every t € [0, 1].

Moreover, a set-valued function F : D — n(Y) is said to be “K — i
concave” if

(2.6) Fltz + (1 - t)y) C tF(z) + (1 - t)F(y) + K,

o=
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forall z,ye D. Ift = 2, Fis called “K-midconcave”; while F is said to
be “K—concave” if (2.6) holds for every z,y € D and for every ¢ € [0, 1].

The set-valued function F is said to be “K~-quasiconvex” if for every
convex set A C Y the lower inverse image of A-K, i.e. the set

FF(A-K)={zeD: F(z)n(A- K) #0},
is convex; while F is called “K—quasiconcave” if

F(tz +(1-t)y) C co (F)UFW)+K, Ve,yeDandtelo,1l.

]

The set—valued function F is said to be “K-Wright convex” if

‘ 2) + F(y) C Ftz + (1 - t)y )+F((1—t):z:+ty)+1(

for all z,y € D and t € [0, 1]; while F is called “K-Wright concave” if
F(tz 4+ (1 - t)y) + F(1-t)z+ty) C F(z) + F(y) + K,

for all z,y € D and t € [0, 1].

- Let Xx=(z1,...,%p) and Y = (y1,...,¥p) be p-tuples of vectors z;,y; €
R"™. Then X is said to be majorized by Y, written X < Y, if there exists a
doubly stochastic p x p matrix H such that [z1,...,7,] = 1, .- ,y,,] H;
here [z1,...,%,) denotes the n X p matrix whose i- th column vector is z;.

Let S be a subset of (R")?, a set-valued function ¢ : S — n(Y) is said to
be “K-Schur convex” if :

$(Y) C () + K, forall X, YES such that X<,
while ¢ is said to be “K-Schur concave” if
o(x) C (Y) + K, forall x, Y€ S suchthat x<7v.

Fixed two bases of neighbourhoods of zero, U(0) and W(0), respectively in X
and in Y, the set-valued function Fis sald to be “K -lower semicontinuous »
in a point moean v :

(K-lsc.) YWe W(O) there ex1sts a nexghbourhood U € U(0) such that
\ ,F(:co)CF(a:)+W+K Vz € (z0 + U) N D;

while F is sa,ld to be ¢K- ~upper- semicontinuous ” in Zo € D if
(K-u.s.c.) 4 € W(O) there exists a nelghbourhood U € U(0) such that

F(z) CF(zo) + W+ K, Vze(zo+U)ND;
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moreover F is said to be “I-continuous ” in the point z¢ € D if it is

“K-lower semicontinuous” and “K-upper semicontinuous” in this point.
Finally the set-valued function F is said to be “K —lower bounded” (“K-
upper bounded”) on a set A C D if :

there exists a bounded set B C Y such that

2:7) U Fz) cB+ K (U F(z)C B - K) :

€A €A

3. On the representation of functions generating K—Schur con-
cave sums. In the next theorem we give a characterization of functions,
that assume values in a Banach space, generating K-Schur concave sums,
To obtain this theorem we first estabilish the Lemma 1 and a slightly weaker

“version of a proposition proved in [14] (cf. Theorem), because the hypothesis
lll) of our Theorem 1 is more general than hypothesis m) of the Theorem
in [14].

LEMMA 1. Let X be a real vector space and Y be a real topologtcal
vector space Ty, D be a convex subset of X, K be a closed cone in Y and
F : D — C(Y) be a K-midconcave set-valued function In these conditions,
F has the following property:

(3.1) F(x1+...+xn) c F(z1)+.. +F(mn)

n n

+K, Vau,... 70 €eD.

PROOF. Proceeding by induction, from the K-mi dconcavity of F, it
follows that ‘ : - . A

‘ 14 ...420\ _ F(z1)+...+ F(z2)
(3.2) F ( 5% )C . T +K
for every p € Ny and for every z,,...,2 € D.

Now fixed n € N, and choosen -p € N such tha.t n < 27, ta.ke a,rbltra.ry
T1y...,Tn € D, and let A : v ’
_n +...4+ 2z,
- n
Since D is convex, zx € D, for k = n+1,...,2P. We have -11—'*'—2
fit.tZa whence by (3.2) it follows :

2"“-,—n T1t+...+2Zn), 0 21+'.'.;+zu \
(‘2""‘)'?( n )+2PF( T )
¢ Fl)+ -2-;'*' F(z2s) +K ‘

1 | ' 2?—n :l;i':+.,..'+h:n
=2—,[F(x;)+,..+F(z,,)1+(.2,. Jr(2tatoe) g

, for lc—n+l
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so, because the values of I are compact and convex and K is closed, by the
“law of cancellation” (¢f. (15]) we obtain

nF (“’l_'f'___n_j‘ﬂ) C F(z1)+...+ F(zs) + 27K,

which yields (3.1).

Now, for every fixed cone K in a Banach space Y, we consider the follow-
ing (non empty (cf. [9 ], Theorem 1) ) class Ak of subsets of a convex and
open set D C R"'

TcD: everyK —mldconvex function defined on D,
(3.3) _A,{ = taking its values in Yand K-upper !

bounded on T, is K{-continuous on D.
It holds the following

THEOREM 1. Let Y be a Banach space, I be a normal and closed cone in
Y, D be an open and convex subset of R and f,g : D =Y be two functions
such that:
i} f is K~midconvex on D;
i) g is K-midconcave on D;
iii) 3T € Ak, 3 a bounded set N C Y : g(z) - f(z) € N + K, VzeT.
Then there exist two functions F,G : D — Y respectively K —convex and
K —concave and an additive function A : R™ = Y such that:
(1) f(z) = F(z) + A(=), Vz € D,
(2) g(z)=G(z) + A(z), Ve € D.

We omit the proof because it is analogous of the proof of the Theo-
rem of [14].
Now we are in a posmon to prove the followmg

THEOREM 2. Let Y be a Banach space, K be a normal and closed cone
in Y, D be an open and convex subset of R™ and f : D — Y be a function.
In these conditions, the following statements are equivalent:

(1) there exists p > 2 such that the sum Z f(=;) is K-Schur concave; .

i=1
(2) f is K-Wright concave;
(3) f is K—midconcave and verifies the condition;

f(tz + (1= t)y) + f((1 - )z +ty) € 2c0{f(2), f(y)} + K,
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for every z,y € D and for every t € [0, 1];
(4) there exist a K-concave function V : D — Y and an additive func-
tion A :R™ — Y such that: f(z) =V (z)+ A(z), Vz € D;

P .
(5) for all p > 2, the sum ) f(z;) is K-Schur concave.

i=1

REMARK 1. The implication (2) = (3) is also true in the more general
case that D is a non-empty convex subset of a real vector space X, K is a
cone in a real vector space Y and F : D — n(Y) is a set—valued function.

PROOF. In order to prove (1) = (2) we fix 2,y € D, t € [0,1] and let
X=1(21,22,...,2p) € D?, where 21 =tz + (1 - t)y, zo = (1 =t)z + ty, z3 =
coo=2zp ==z, and Y = (wy,wy,...,wp) € DP, where wy = z,w; = y, w3 =
...=w, = z. Since X < Y, taking (1) into account, we have that

fltz+ (L =t)y) + f((1 - t)z + ty) € f(z) + f(y) + K,

which was to be proved.

As we said in Remark 1, (2) = (3). To prove (3) = (4) we fix a point
p € D and we consider a positive number ¢ such that the closed ball clB(p, ¢)
is included in D. Let {ey,...,€,} be the standard ortonormal base in R"
and we denote by L;, ¢ € {1,...,n}, the line segment joining the points
a; = p+ce; and b; = p — ce;. For every z € L; there exists a t € [0, 1] such
that 2 =ta; + (1 — t)b;. Then 2p — 2 = (1 —t)a; +tb; € L; C D, hence, we
have

(34)  f(x)+ f(2p-z) €2 co{f(ai), f(b)}+ K, forall =z e L.

Now we consider the set

(3.5) M= co{f(a1),...,f(an), ..., f(B1),- .., f(bn)}

and the function g : clB(p,e) — Y defined by g(z) = —f(2p - z), Vz €
clB(p,e). Taking the K-midconcavity of f into account, we have that g is
(—K)-midconcave. Moreover, by (3.4) and (3.5) it follows

(3.6) g(z) - f(z) € —2M - K, Vz € LnJ L;.

i=1

Now, put

Zy+...+ Ty,

n

(3.7) T={ ; zl,...,anOL;}nB(p,e).

i=1
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For every y = fit==4Zu ¢ T we obtain (cf. Lemma 1 and (3.6))

_ (3.8)' 9(y) - F(y) € %{g(w,) = f{z) + ..+ g(20) - flza)] -
-K~-K-2M-K.

Now we have that the restrictions of f and g to the set B(p, ¢) satisfy the
hypothesis of our Theorem 1. In fact f is (—K)-midconvex, g is (- K)-
midconcave and (3.8) is true on the set with non empty interior T E A_k
(cf. (3.7), (3.3) and [12], Corollario 3.3 ). Therefore, there exist a (—K)-
convex function F': B(p,£) = Y, a (—K)-concave function G : B(p,e) —» Y
and an additive function A : R® — Y with the properties

(3.9) f(z) = F(z) + A(z),  Vz € B(p,e¢)

(3.10) - g(z) =G(z) + A(2), Vz € B(p,¢).
Now, we consider a function V : D — Y defined by
(3.11) V() = f(z) - Az), Ve e D.

Using (3.9), we have that V is K—concave on B(p,¢); therefore the function
V is K-continuous on B(p,€) (cf. [1], Theorem 5.5). On the other hand, V
is 'K-midconcave on D and then we can say that V is K—continuous on D
(cf. [1], Corollary 1). So, by the Theorem 5.4 of [1], V is K—concave on D.
Thus, taking (3.11 ) into account, the statement (4) is proved.

Now, we suppouse that f has the representation f = V + A, where V
- is a K—concave function and A is an additive function. Fixed an arbitrary
number p € N, if X = (z1,...,%,), Y = (y1,...,yp) € DP are such that
X < Y, we can say that (cf. [12 ], Theorem.2.3)

EV(z,) = Zv (Zh ,,y,> € zp:i‘h,,,v (vi) + K

. ]_ ]—l i=1
(3.12) P.
=) V() +K,
) i=1 '

where H = (h; ;) is the d0ubly stochastic p X p matrix such that

‘ . P 4 )
(#1,...,2p) = [y1,..., yp] H; moreover, since Y z; = ¥ y; holds, it follows
' “ i=1 i=1 .
that '

p 4 :
DoA) =) Alw),
i=1

=1
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hence, by (3.12), we obtain

Y f=)ed Vi) +K+ZA(y,)_Zf(yt)+1(

i=1 i=1 i=1 - =1

Therefore (4) implies (5). o ' ‘ .
The obvious implication (5) = (1) completes the proof. B

: REMARK 2 This result contains, asépec:al case, the Theorem provédvby _
C.T. Ng in {13 ] and the Theorem 2 stated by K. Nikodem in [11']. {t is
easily seen 1f we assume Y =R and K = ] 00, 0]. » '

4. On the characterlzatlon of K-concévé'set-\}alued fuﬁction's .

In this section we obtain a neCeé.éa\fy and sufficient condition. for.a given ‘
set-valued function to be “K—concave”. We need first the following Lemma
which is an analogous to a result for functxons [8] and for set-valued functlons o

[3]-

LEMMA 2. Let K be & cone in a reaJ ‘topological vector space Y f
the set— valued function F : [0, 1] = Cg(Y) is K—mtdconcave on’[0, 1] and .
+ “K-concave” on (0,1), then F is'cIK—concave on [0, 1].

PROOF. Fixed z;y € [0, 1] and ¢ € (0 1), we put z = tz+(1 - t)y. Now let
32 and v = ”% Then we have that u,v € (0,1) and z = tut(1—t)v.
Since F is K-concave on (0,1) and K —mxdconcave on [0 1] and, moreover;
the values of F' are K —convex, it follows - '

F(z)+tF(u) + (1 - t)F(v) C
(4.1) Ct{F(u) + F(w)]+ (1 - t)[F(v) + F(v)]+ K c-
’ C cl(tF(z)+ (1 - t)F(y) + K) + tF(u) + (1 = t)F(v). .

u=%

Since the set cl (tF(z) + (1 — t)F(y) + K) is convex and F has ‘compact
values by the “law of cancellatlon and by Lemma L9 of [12); it fotlows

\

F(z) C tF(:c) + (l - t)F(y) + clk
na.mely- Fiscl If4concave on [0 1. o

'IHEOREM 3. Let X be a real vector space. Y be a real locall convex
topological vector space Ty, D be a convex subset of X, K/be & élosed cone
inY and F : D — Ck(Y) be a set-valued fiin¢tion. In these conditions, F
is K —concave if and only if F is K —mzdconcave and K ~quasiconcave.
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PROOF. The necessary condition is trivial (cf. [12], Theorem 2.9). Now,
we suppose that I is A'-midconcave and K-quasiconcave. Fixed z,y € D,
we define the set-valued function H : [0, l] —Ck(Y) by putting

(4.2) H(t) = 1“(m+(1 -t)y), Vtelo,l].

From Theorem 2.11 of [12] it follows that H is “K—quasiconcave” on [0, 1]
and, on the other hand, it is easy to see that H is also K-midconcave on
[0,1]. Fixed z,y € D, since F is K-quasiconcave, we obtain

H(t) C co(F(z)UFW) + K, Ve[o,1],

hence, being the set co(F(x) U F(y)) bounded, the set-valued function H is
K-lower bounded on [0, 1]. Therefore, from the Theorems 5.3 and 5.4 of [1]
and from our Lemma 2, it follows that H is K-concave on [0, 1]. Finally, by
(4.2), we get

Fltz+ (1 - t)y) C tF(e) + (1 - )F () +.K, W e[o,1],
namely F is K-concave. - - _ ; 0
REMARK 3. This Theorem 3 is not still true if we drop the assumption
that the values of set-valued function F are I{-convex, as it is easy to observe

by the following example: let X =Y =R, K = {0} and F : R = n(R) be
the set-valued function so defined

{0,1}, =zeQ
F“)={[mn, zeR\Q

In fact, F is K—midconcave and K—quasiconcave but F is not K-concave.

THEOREM 4. Let X be a real vector space, Y be a real topological vector
space Ty, D be a convex subset of X, K be a closed cone inY and t be a fixed
number in (0,1). In these conditions, if F : D — Ck(Y') is a K-t—concave
set-valued function, then F is K-midconcave.

Proor. Let z,y € D; by using the K—t—concavity of F' and the fact that
its values are K—convex, we get (cf. [12 ], Lemma 1.1)

2t(1 - t)F (‘” ;“ y) +[1-2(1 - ))F (%) c

‘ctF((l—t)z+t ;y)+(l-—t) (ty+(1—t) )+Kc

C t(1 = )F(z) +4(1 - ) F(y) + [1 - 26(1 ~ )] ( ;y) I K.
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Since the set {(1 — t)F(z) + t(1 — t)F(y) + K is convex and closed and the
set [1 — 2¢t(1 — t)]F (£5£) is bounded, by the law of cancellation, it follows

2
that
T+y

2t(1 = t)F

P Y

) C t(1 = )F(=) + t(1 — ) F(y) + K,

hence

F (”‘ ! "’) C 5[F(@) + F)+ K,

a.

REMARK 4. The idea of the proof of Theorem 4 is due to Z. Daroczy
and Z. Pales [4]. Moreover, we observe that if Y =R, K =]- 00,0] and F
is a (single-valued) function, our Theorem 4 reduced itself to a wéll-known
result of N. Kuhn [6].

As an immediate consequence of Theorem 3 and of Theorem 4 we obtain
the following

L1
.

CoRoOLLARY. Let X be a real vector space, Y be a real locally convex
topological vector space Ty, D be a convex subset of X, I be a closed cone
in'Y and t be a fixed number in (0,1). In these conditions, a set-valued
function F : D = Ck(Y) is l( —concave if and only if F is K-t-concave and
K —quasiconcave. :

N

REMARK 5. It follows easily that if X =R", Y =R, K =]-00,0] and F
is a (single-valued) function, our Corollary strictly contains the Proposition -
3.of [11 ], the Theorem 2 of [2] and the Theorem proved in [5]; moreover, it
extends the Corollary 1 of [3].
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