JAN FRYDA*

QUASIBILINEAR FUNCTIONALS

Abstract. In this paper a certain natural generalization of bilinear functionals is introduced and
investigated. We define quasibilinear functionals by replacing the additivity of a bilinear functional
with three weaker conditions. The solution is a sequence of bilinear functionals on subspaces of the
given linear space.

Quasibilinear functionals are useful in considerations of general projective
metrics defined by Rozenfel'd in [3] and generalizations of projective metric
spaces as projective spaces with a relation of orthogonality ([2]). These
applications will be presented in the next paper.

This work is a part of the author’s doctoral thesis entitled “Weak structures
of orthogonality on projective spaces of finite dimension” (in Polish), com-
pleted under the supervision of doc. dr Edward Siwek at the Silesian University
in Katowice. The author wishes to thank dr hab. Marek Kordos for valuable
suggestions.

1. Basic notions. In this paper the symbol V always denotes a linear space
of a finite dimension n over a commutative field F of characteristic not equal to
2. The zero vector of V is denoted by ®. We write ID(u, v, ..., w) iff vectors
u,v, ..., w are linearly independent and D (u, v, ..., w) otherwise. If U is a linear
subspace of ¥V then we write U <V. In particular @ <V, {®} <V,
dm@ = ~1and dim{®} =0.f U< V,U #V and dim U > 1 then we say
that U is a proper subspace of V. The linear closure of a set M c V is denoted
by Lin M. In the case of M = {u} , u # ©, we write shortly (u) instead of Lin
{u}. The symbol dV denotes the set of all directions (i.e. 1-dimensional
subspace) of V.

Recall that a bilinear (symmetric) functional on V is a mapping f: VXV - F
satisfying the following axioms:

Bl V u,veV  (f(u,v) =f(v,w),

B2 V u,veV V AeF (f(u, Av) = Af(u,v)),

B3 V u,vo,weV (f(u,v+w)=f(u,v)+f(u,w).

By &, (V, F) we denote the set of all bilinear functionals on V. For arbitrary
feZ,(V, F) the structure (V, F) is called an orthogonal linear space.
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DEFINITION 11. A mapping f: VxV—F is called a quasibilinear
functional on V if, and only if, the following axioms are satisfied:

QBL V u,veV  (f(u,v) = f(v, w),
QB2 VY u,veV V AeF (f(u, Av) = Af(u,v)),
QB3 V u,0,weV  (f(u,v) #0 A f(u,w) #0=>f(u,v0+w) = f(u, )+ (u, w)),
QB4 V u,0,weV  (f(u,v) = f(u,w) = 0 A f(u,0+w) # 0=>f(v,v+w) = 0),
QB5 V u,o,weV  (f(u,0) =fu,w) = flo,w) =0 A f(v,0) %0
=f(u,v+w) = 0).

The set of all quasibilinear functionals on V is denoted by 2.2, (V, F). For
arbitrary fe 2.%,(V, F) the structure (V,f) is called a quasiorthogonal linear
space.
i Note that we consider only symmetric functionals. Moreover we have

COROLLARY 12. Z,(V,F) c 32,(V, F).
"~ Conversely, by an easy verification we obtain

COROLLARY 1.3. A quasibilinear functional fe 3% ,(V, F) is bilinear on
V if, and only fif,

(B) Y uo,weV (f(u,0)=flu,w)=0=>f(u,v+w) = 0).

Since the axioms QB1—QBS5 are universal sentences then we get
COROLLARY 14. If fe 2%,(V,F) and U < V then f|Ux Ue 2.%,(U, F).

DEFINITION 1.5. A quasibilinear functional fe 2.%,(V, F) is said to be

nondegenerated if, and only if,

QB6 V ueWV\{®} 3 veV (f(u,v)+0).

The set of all nondegenerated quasibilinear functionals on V is denoted by
N 2L (V,F). A quasiorthogonal linear space (¥,f) is said to be nondegenerated
if, and only if, fe#/'2%,(V,F). Analogically we put A& ZL,(V,F):=
Z,(V,F)n ¥ 2Z,(V, F).

The conditions QB1—QB6 are a certain version of the conditional Cauchy
equation (see e.g. [1]). Moreover, one can easily verify that the axioms
QB1—QB6 are independent.

We say that vectors u, ve Vare orthogonal with respect to fe 2.2,(V, F) and
we write u L v iff f(u, v) = 0. If fis fixed then we write shortly L instead of L.
The axioms QB1 and QB2 imply the following

" COROLLARY 16. If fe2%,(V,F) then

(i) VuveV (ulveovlu),

(i) V uev (ul®),
(iii) V u,veV  (uLlo=>V A,ueF (Aul uv)).

Let f € 2% ,(V, F). A nonzero vector ve Vis said to be isotropic iff v L v. The
last corollary makes it possible to define an isotropic direction as A edV such
that A4 contains an isotropic vector. Subspaces U, W< V are said to be
orthogonal (we write U L W) iff u L w for every ue U and we W, Analogically,
we define an orthogonality u | W for ue Vand W < V. Now, by Corollary 1.6,
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we can say that a direction A edV is isotropic iff A L A. Moreover, in the usual -
manner we define the singularity of subspaces, i.e. a proper subspace U < V is
said to be singular in (V,f) iff UL V. We may easily verify the following

~ COROLLARY 1.7. A quasibilinear functional f is nondegenerated on V if and
only if (V,f) contains no singular subspaces.

Corollaries 1.6 and 1.7 give some interpretations of the axioms QB1, QB2
and QB6, respectively. Now we shall interpret the remaining axioms. The
axiom QB3 implies

COROLLARY 18. If fe 22,(V, F), u,v,weV,ID (v,w), u Lv and u L w then
there exists the unique AedLin(v,w) such that ul A.

Proof. Since utv and u Lw then, by virtue of QB1, QB2 and QB3, for
arbitrary A, ueF\{0} we have f(u,Av+uw)= Af(u,v)+uf(u,w). Hence
S, lo+pw) =0 iff A=pf(u,w) and u= —pf(u,v) for some peF. Thus
A= (f (u» W) v—f (u’ ”) W)

By QB1—QB4 we obtain

COROLLARY 19. If fe3%,(V,F),u,v,weV,ID(v,w),ulv,ulw and
ulv+w then ul AL(v+w) for every AedLin(v, w\{(v+w)}.

Proof. It follows from the assumptions and Corollary 1.8 that for every
direction A edLin (v, w) different from (v+ w) we have ul A. For an arbitrary
vector te Lin (v, w)\(v 4 w) there exist A, ue F such that 1 # u and t = Ao+ uw.
If A =0 or u = 0 then by Corollary 1.6 we have t Lv+w. Let A # 0 and u # 0.
Putting s = (A—u)w we obtain t+se(v+w), but since ult, ulsand ult+s
then by QB4 we have t1t+s. Thus tLv+w for every teLin(v, w)\(v+w).

Finally, the evident interpretation of QBS5 gives the following

COROLLARY 1.10. If fe22,(V,F),u,v,weV,ID (v,w),ulvlwlu and
vALv then ulLin(v, w).

From the point of view of applications even more important than Corollary
1.9 is the following

COROLLARY L.11. If fe 2% ,(V,F),u,v,we V,ID(v,w), ueLin(v,w), ulp
and ulw then ult for every teLin(v, w)\(u).

Proof. It follows from Corollary 1.8 that either u L Lin (v, w) or there is
a unique direction AedLin(v,w) such that ufA and ult for every
teLin (v, w)\A. Obviously, it is sufficient to consider only the second case. Let
s = Av+uw and uLs, where A, u eF. Hence A # 0 and u # 0. By Corollary
1.10 we obtain tLls for every teLin(v, w)\(s). Since sLu then ue(s), ie.
(w) = (s) = A. Thus u.lt for every teLin(v, w)\(u).

Given fe2%,(V,F) and U <V, dimU = 2. Putting f, = flUxU, by
Corollary 1.4, we obtain f, € 22,(U, F). 1t follows from Corollary 1.3 that if
f1€2,(U,F),u,0,weU,u#@, ID(v,w), uLv and ul w then (u) LU, ie. (u) is
a singular subspace of (U, ;). Now, let us assume f, € 2.2,(U, F)\ %, (U, F). By
virtue of Corollary 1.3 there exist u, v, we U such that u L v, u L w and u L v+w.
Consequently by Corollaries 1.6 and 1.11 we have ID (v, w), u # O, (u) = (v+w)
and (u) L (). Thus (u) is not a singular subspace of (U, f,) but is has a very
similar property: (u)Lt for te U\(u). Th1s suggests the following
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DEFINITION 1.12. Let fe 2.%,(V, F). A proper subspace U < V,U # V, is
called a quasisingular subspace of (V, f) if and only if U Lt for every te V\U.

It is evident that each singular subspace of a quasiorthogonal space (V,f) is
quasisingular. Before investigating the properties of quasisingular subspaces we
must introduce some additional notions.

2. Two-dimensional quasiorthogonal linear spaces. By virtue of Definition
1.1 and Corollary 1.3 we obtain the following

LEMMA 21. If dimV =1 and fe 3% ,(V,F) then fe Z,(V, F).

Since for arbitrary vector e, # @ we have v = v'e, for ve(e,), where v' € F,
then this lemma implies

-COROLLARY 22. If dimV =1, fe 3%,(V, F) and e, e V\{®} then either

(2.2.1) fu,v)=0 for u,veV,
or
222 fley,e)) #0 and f(u,v) = ulv'f(e,,e,) for u,veV.

This implies that if dimV = 1 and fe 2.2,(V, F) then either u L v for every
u,veV,orVuveV(ulv=>u=0vo= ©)). In the first case the functional
f is degenerated, in the second case f is nondegenerated.

It is well known that if dim V = 2 and fe Z,(V, F) then there exists a basis
{ey,e,) of V such that

(223) flu,v) = ulvlf(eli el)+uzvzf(e2s e)
for u = ule; +u’e, and v = v'e, +v?e, V.

DEFINITION 2.3. Let (e,,e,) be a basis of a 2-dimensional space V and
let f be a bilinear functional on V determined by formula (2.2.3). The
quasiorthogonal space (V,f) is said to be:

(i) totally degenerated space (TDS) iff f(e,,e,) = f(e,,e;) =0,
(ii) parabolic space (PS) iff f(ey, e,) # 0 and f(e,, e,) = 0, or f(e,, e,) = 0 and

’ f (ez, ez) #0,

(iii) elliptic space (ES) iff f(es,e,) #0, f(e,, e;) # 0 and

@24)  VAueF (fles e)+uf(er e) = 0=1=p=0),
(iv) hyperbolic space (HS) iff f(e,,e,) #0, f(e,, e,) # 0 and '
2.2.5) 3 4, ueF\{0} (2% (e, e))+ 1%/ (ez, €;) = 0).

LEMMA 24. If dimV =2 and fe 2%,(V, F\%,(V, F) then there exists
a basis (e,,e,) of V such that

w'o'f(e,, e) if u? =102 =0

2. . ’ ’ = ’
@28 fley,e) #0 and ftu, ) {uzvzf (er,e)) if u>#0 or v2 #0.
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Proof. From Corollary 1.3 we may see that there exist e;, e,, e;€V such
that e, L e,,e, Le; and e, Le,+e,. It follows from Corollaries 1.6 and 1.11
that ID(e,, e;) and

(1) e, 1t for teV\(ey).
Hence D(e,,e,+e,),
@ e ley,

and ID(e,, e,), ie. the vectors e, e, form the basis of ¥ and for every u,veV
we have u = u'e, +u?e, and v = o'e, +v?e,. It results from QB1 and QB2 that

3 (? = v? = 0=>f(u, v) = u'v'f(e,,e,)) for u,veV.
Moreover, from (2) we have

4 Sfley, ey) #0.

Also (1) implies ,

0] (@>=0A02#0vu?#0 A v?=0)=f(u, ) = uv’f(e,,e,).

Now, let u>#0 and v2#0. From (5) we have f(u,v3%e,) =0, and since
ule,vle,,v’e,le, and e, Le,, then by Corollary 1.11 we obtain the
equivalence

fu,v) = 0<>f(u, v’e,) =0,

and consequently, from Corollary 1.3, we have f(u, v) = f(u, ve,). Analogically
we derive f(u, vle,) = f(ue,, v?e,), therefore f(u,v) = f(u’e,, v’e;). Thus

6 (u® #£0 A v? #£0=f(u, v) = u’v*f(e;,e;) for u,veV,

because f(u’e,, v’e,) = uv’f(e,, e,). This completes the proof.

DEFINITION 2.5. Let dim V = 2, fe 2.%,(V, F)\Z,(V, F) and let (e, e,)
be a basis of ¥V such that f is determined by the formula (2.2.6). The
quasiorthogonal space (V, f) is said to be:

(i) quasitotally degenerated (QTDS) iff f(e;,e;) =0,
(ii) quasiparabolic space (QPS) iff f(e,,e,;) #0.

Now, we have

COROLLARY 26. Let dimV = 2 and let fe 2% ,(V, F). A quasiorthogonal
space (V, f) is either TDS, PS,ES,HS,QTDS, or QPS.

This implies that using the notions of isotropic, quasisingular and singular
direction and the notions of orthogonal and degenerated spaces we may
complete the properties of 2-dimensional quastiorthogonal linear spaces as in
the following Table.
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TABLE 2.7.

orthogonal | degenerated isotropic quasisingular singular
spaces spaces directions directions directions
TDS + + all all all
PS + + exactly exactly exactly
one one one
ES + - none none none
HS + - exactly none none
two
QTDs - + all except all all except
, one one
QPS - - none exactly one none

Moreover, since charF # 2 then we have the following

LEMMA 28. If dimV = 2 then V contains at least four different directions.

This makes it possible to recognize the type of an arbitrary 2-dimensional
quasiorthogonal space (V, f) by the properties of a relation L - For example, if
(V. f) contains exactly two isotropic directions then (V, f) is an HS. Analogical-
ly we obtain:

COROLLARY 29. If dimV =2, fe 2%,(V, F), u,veV,ID(u,v) and u Lv
then there exists exactly one direction AedV such that ul A.

Note that 2-dimensional quasiorthogonal spaces which are not orthogonal
may be defined as the spaces containing some quasisingular direction which is
not singular. This suggests the following:

DEFINITION 2.10. Let dimV=2 and fe2.%,(V,F). A quasisingular
direction AedV is called an axis of (V, f) iff A is not singular.

Thus

COROLLARY 2.11. If dimV =2, fe 2%,(V, F) and (V, f) contains an axis
then (V, f) is either QTDS or QPS.

Now, we consider a case of a 2-dimensional subspace U of a quasior-
thogonal space (V, f). It follows from Corollary 1.4 that f|U x Ue2¥%,(U,F).
By virtue of Corollary 1.10, Table 2.7 and Definition 2.10 we obtain

COROLLARY 2.12. If fe3%,(V,F), u,v,weV,ID(v,w),ulv,ulw,
U =Lin(v,w) and '

(@) (U, flUxU) is an ES or an HS
or

(i) (U, flUxU) is a PS and wlw
or
(iii) (w) is an axis of (U, flUx U)
then ulU. .

LEMMA 213. If fe2%,(V,F),u,v,weV,ulv,ulw and uLv+w then
there exists a subspace U <V and a direction AedU such that dimU = 2,
U <Lin(u,v,w) and A is an axis of (U, flU x U).
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-Proof. Suppose that this is not true, i.e. there is no 2-dimensional subspace
of Lin(u, v, w) which contains an axis. Hence, by Corollaries 2.6, 2.11 and
Table 2.7, for every U < Lin(u,v,w), dimU = 2, the space (U, f|U xU)
is orthogonal. Then from the hypotheses, Corollary 1.9 and Table 2.7 the
vectors u, v, w are linearly independent and the direction (v+w) is singular
in (Lin (v, w), f]Lin (v, w) x Lin (v, w)). Therefore (Lin (u, v+w), f|Lin(u, v+w)
x Lin (u, v+w)) is an HS because u Lv+w and v+w_Lv+w. Hence there exist
vectors t,seLin(u,v+w)\(v+w) such that t1t and sLs. Moreover, from
Corollary 2.12, for every pelLin(v, w)\(v+w) we have pLlLin(u,v+w). It
follows from Table 2.7 that (Lin (v, w), f]Lin (v, w) X Lin (v, w)) is either a TDS
or a PS. If this space is a TDS then for any peLin(v, w)\(v+w) the space
(Lin(t, p), fILin(t, p) x Lin(t, p)) is a TDS, and from Table 2.7 we obtain z | z
for every zeLin (u, v, w)\Lin (u, v+w). Hence (Lin (v, 5), f]Lin (v, s) X Lin (v, 5))
is a QTDS, because of sLs. This contradicts the hypothesis. Now, let us
assume that (Lin(v,w), f|Lin(v,w)xLin(v,w)) is a PS. Then for any
peLin (v, w)\(v+w) the space (Lin(t, p) x Lin (¢, p)) is also parabolic, and from
Table 2.7 we obtain z L z for z€Lin (4, v, w)\Lin (#, v+ w). Analogically, for any
zeLin(u, v, w)\Lin(u,v+w) the space (Lin(v+w, z), f|Lin(v+w, z) X Lin (v+w, 2))
is also parabolic. Therefore, from Corollary 2.12, we have z | Lin (u, v+ w) and
z Lz for zeLin (u, v, w)\Lin (4, v+w). Thus (Lin(s, v), f]Lin (s, v) X Lin (s, v)) is
a QPS which again contradicts the hypothesis. This completes the proof.

This lemma suggests the following

DEFINITION 2.14. Let fe 2.2,(V, F). A direction AedV is called an axis
of (V f) if and only if there exists a subspace U < ¥ such that dimU = 2,
AedU and 4 is an axis of the space (U, flU xU).

From Corollary 1.3, Definitions 1.12, 2.10, 2.14 and Lemma 2.13 we deduce
the following

COROLLARY 215. If fe 2% ,(V, F) then the space (V, f) is orthogonal if
and only if (V, f) does not contain any axes.

3. A relation of an axial orthogonality. In the preceding section we proved
that the searching of all vectors u, v, we V such that u Lv, ulw and u Lo+w
may be replaced by the searching of all axes. Moreover, it follows from
Corollary 1.11 that an axis (s) of 2-dimensional space (¥, f) may be defined as
such direction (s)edV that u L s, s—u L s and s L s for some ue V. This suggests
the following

DEFINITION 3.1. Let fe 2, (V, F). We say that a vector ue V is axially
orthogonal to a vector se V and we write ul,s if and only if uls, s—uls
and sts.

.By virtue of Corollaries 1.7 and 1.11 we obtain the following

‘COROLLARY 3.2. If fe 2%,(V, F),u,s€V and ul,s then ID (u,s) and s L ¢
Jor every teLin(u, s)\(s).
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Since sLs then the last condition means that (s) is an axis of the space
(Lin(u, s), f1Lin (u, s) x Lin (4, 5)). Moreover, from Table 2.7 and Corollary 2.9
we, derive :

‘COROLLARY 33. If fe 2%,(V, F), u,v,s€V,ul,v, ul.s and ID (v, s) then
ID(u, v, s).

To illustrate the further considerations we shall give figures based on the
following:

REMARK 34. Let V be a linear space over a commutative field F and let
dimV = 3. A direction AedV may be represented by a line on the projective
plane & over F. Then 2-dimensional subspaces U < V may be treated as points
on 2. Moreover for an arbitrary 2-dimensional subspace U < V and a vector
ueV\{©} “the line” (u) passes through “the point” U iff ueU. The ort-
hogonality of the directions (1) and (v) we denote as follows:

)
@ ><< if ID(u,0) and u Lo,
®)
(ii) - () if u#0© and uly,
(®)
(i) >< if ID(u,v) and tLv for teLin(u, )\().
®

Now we shall investigate further properties of the relation L. At the
beginning, let us note that according to Corollaries 1.6, 3.2, Table 2.7 and
Definition 3.1 the relation L, is neither reflexive nor symmetric. However, it is
transitive, i.e. we have

COROLLARY 35. If fe2%,(V,F),u,v,weV,ulv and vL.w then ulw.

Proof. It follows from Table 2.7, Definition 3.1 and Corollary 3.2 that
ID(u,v,w), v Lv and w L w. By virtue of Corollary 2.12 we obtain the following
alternative

1) (V teLin(u,o)\() (wLt) v (wLlLin(u, ).
Suppose that
(Hp) V teLin(u, v)\(t) (wLi).

Then w,Lu and by Corollary 2.9 there exists exactly one (s)edLin (u, w) such
that w.l(s). Let us put (Fig. 1):

pelLin(s, v+w) n Lin(u, v)\{O},
reLin(s, v—w) N Lin(u, o)\{©},
xeLin(p,v+w) N Lin(w, )\{®},
yeLin(p, v—w) n Lin (w, )\ {@}.
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Since v+wlwls and wLp, then from Corollary 1.9 we have w.lx.
Analogically we derive w.ly. Thus xLw and consequently r.lw, which
contradicts (Hp). Therefore (1) implies

@ w.LLin(u, v).
It follows from the assumptions, (2) and Corollary 2.12 that
) u+vLLin(,w).

Moreover, (Lin(v, w), f|Lin (v, w) X Lin (v, ) is a QPS because vl,w and v Lv.
Hence by (3) and Corollary 1.10 we deduce wlLin(u+v,v+w). Now, for
teLin(u, w) A Lin (u+v, v+ w)\{®} we have w Lt and ID (u, t). Therefore ul, w,
because ulw,tlw,wlw and teLin(u, w)\(u).

In Definition 1.12 we introduced the notion of a quasisingular subspace. It
is obvious that an axis of a 2-dimensional space (V, f) is such a subspace and it
is not a singular subspace. The next example is given by the following

LEMMA 36. If fea2%2,(V,F),u,v,weV,ul.v,ulbw and ID(v,w) then
t1LLin(v,w) for teLin(u, v, w)\Lin(v, w).

Proof. It follows from the assumptions and Corollary 3.3 that

(1) ID(u, v, w).
Consequently, from Corollary 3.2 we have

2. V teLlin(u, v)\(v) (¢tLv),
3) V teLin(u, w)\(w) (tLw).
Moreover

@ vLo

and

) wlw.
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Since ulw then (2), Corollaries 1.10 and 1.11 imply the alternative

6) (V teLin@, )\@®) (tLw)) v (VteLinu, )\@) (L w)).
Now, suppose that
(Hp) V teLin(u, )\() (tLw).

In particular v Lw and by Corollary 2.9 there is a unique (z) edLin (v, w) such
that w1z Moreover (5) implies ID(w,z). Let us put (Fig. 2):

' teLin(u, w) N Lin(z, u+0)\{©},
seLin(u, w) N Lin(z, u—o)\{®)},
reLin(w,u—v)nLin(z, u+0)\{©},
peLin(w, u+v) nLin(z, u—v)\{0},
x€Lin(w, u+v) N Lin(z, u)\{©},
yeLin(w,u—v) A Lin(z, u)\{®},

1)) o)

xy
kL

(t)

(W—£ -
(Z)% /[(uM (W W

It follows from (3) and the definition of ¢ that t 1 w and, since w1z and
wLu+v, then Corollary 1.10 implies r Lw. Analogically we obtain

(H1) plw.
Moreover, by Corollary 1.10 we derive an alternative
(H2) xlwvylw

because u_Lw and z 1 w. Now, with the help of (5), (H1), (H2) and 3.1 we obtain
the alternative (xL.w v yl,w) which implies
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(H3) ut+olwvu—ovlw.
Since the sentences (Hp) and (H3) are contradictory then from (6) we deduce

¥)] V teLin(u, v)\(v) (tLlw)
and, from the symmetry of the assumptions with respect to » and w, we have
8) V teLin(u, w)\(w) (tLlv)

Now, let us put (Fig. 3):
teLin (v, w)n Lin (u+ v, u+w)\{O},
zeLin(v, w)n Lin(u+v, u—w)\{®},
xeLin(u—v, w)n Lin(u+v, u+w)\{0},
yeLin(u—v, w) n Lin(u+0, u—w)\{®},

(W)

The conditions (7) and (8) give u+wlw and u+vlw, hence from
Corollary 1.10 we obtain the alternative

()] tlwvxlw.
Analogically we derive
(10) zlwvylw.

The conjunction tLlwAzlw implies vlw, and from the alternative
xlwvylw follows u—vlLw. Thus

(11) vlbwvu—vlw
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and from the symmetry of the assumptions
12) who vu—wluo

Let seLin(u, v, w)\Lin (v, w). Then s = Au+ uv+ pw, where A, u, pe F and
A#0.If p =0 or p =0 then it follows from (2), (3), (7) and (8) that s Lw and
s1v. Now, let us assume that u # 0 and p # 0, and let us consider two possible
cases:

‘(i) vLw. Since (3) and (8) imply Au+ pw Lw and uv L Au+ pw, respectively,
then from (4) and Corollary 1.11 we deduce w. L Au+uv+pw, ie. wls. From
the symmetry we also get v.ls.

(ii) v Lw. Then (11) and (12) imply u—vL,w and u—wl,v, and consequently
Au—pv+ pw L w. Now, since Au+pw Lw and uv L w, then from Corollaries 1.10
and 3.2 we have Au+ pwl, uv. This implies sl ». Analogically we obtain s L w.

Thus '

(13) V teLin(u,v,w)\Lin(v,w) (vLlt.Lw).

Now, let us fix arbitrary vectors teLin (u, v, w)\Lin (v, w) and seLin(v, w).
Suppose that

(Hp) tLs.

Then (13) implies s¢(v) and s¢(w), and by virtue of Corollary 2.9 there exists
a unique (z)edLin(t, s) such that ¢ 1(z). Assuming additionally D(t, z), from
Table 2.7 we derive that (Lin(t, s), f|Lin(t, s) x Lin(t, s)) is an HS and all
the spaces (Lin(t,w), flLin(t, w)x Lin(t,w)), (Lin(, t4w), f|Lin(v, t+w)
x Lin (v, t+w)), (Lin(v, t—w), f]Lin(v, t—w) x Lin (v, t—w)) are quasitotally
degenerated. Since the directions (t), Lin(s,t)nLin(v, t+w), Lin(s,¢)
nLin(v,t—w) are three distinct isotropic directions in (Lin(s,t),
fILin(s, t)x Lin(s, t)), then from Table 2.7 this space cannot be an HS. This
contradiction implies ID(t, z) and consequently ¢ Lt. Now, let us put (Fig. 4):

(W)

(S)(/w i N @
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reLin(w, z) " Lin(p, t)\{©}.

Since t1z1iwlt and wlw, then from Corollary 1.10 we have tLr and,
because ¢1,v, the space (Lin(t, v), f|Lin (¢, v) X Lin(t, v)) is a QTDS and ¢t
This contradiction gives

V telin(u,v,w)\Lin(v,w) VseLin(v,w) (tLs).

With the help of Corollary 3.5 we may generalize the above lemma as
follows: '

LEMMA 37. If fe3%,(V,F),u,v,w,seV,ID(u,v,w), seLin(u,v,w),
ul.v and sL.w then tLLin(v,w) for every teLin(u,v, w)\Lin (v, w).

Moreover,

LEMMA 38. If fe2%,(V,F),u,v,w,seV, ulbv,slLw and ID(u,v,w,s)
then ul,w or si,v.

Proof. We consider two possibilities:

(i) vLw. Then v+silw or v—s1lw and without restricting the generality
we may assume that v+sL w. From the assumptions we have w—s_L w, hence
(v+s)+(w—s)Llw or (v+s)—(w—s)Lw. If (v+s)+(w—s)Llw (ie. v+wlw)
then vl w, which from Corollary 3.5 gives ul,w. Not let us assume that
(v+s)+(w—s)Lw (ie. v+wLw). Then (v+s)—(w—s)Lw and it follows from
Corollary 1.9 that v+w_Lv+s and v+w L w—s. Further we infer that v+slv
or v+w.lv, and w—sLlvor v+wlo. If v+w.Lv then wl v, hence by virtue of
Corollary 2.12 we deduce sLv, but now v+slv and vLv imply sLo.

(ii) v, Lw. Then, by virtue of Corollary 2.9, there exists a unique direction
(z)edLin(v,w) such that wl(z). Since s+z1lw or s—zLlw, then without
restricting the generality we may assume that s+ z L w. Moreover, s, w implies
s+w+zlw or s+w—z1lw and analogically s—w+zlw or s—w—z.lw.
If s+w—zlw and s—w—-zlw then s—zLw and putting
teLin(w, s—z) n Lin(v, 5)\{®} we obtain t L w and further sL.v. f s+w+zLlw
or s—w+zlw then s+zL,w and putting teLin(w, s+2z) n Lin (v, s)\{©®} we
obtain t1w, which again implies sl,v.

Now, applying the above lemmas, by induction on a number of axes we
may prove the three lemmas.

LEMMA 39. If fe3%,(V,F), keN, u,,...,u, v,,...,0.€ V, ID(v,, ..., 1)
and u,Lv,,...,u,l v, then

Ame{l,.. .k} Vie{l,...k} (u,Lv).
LEMMA 3.10. If fe2%,(V,F), keN,u,v,,...,0,€V,ID(v,,...,v,) and
ulvg,...,ul.v, then ulLin(v,,...,v,) Lu+t for teLin(v,,...,0).

LEMMA 311 If fe2%,(V,F), keN,u,v,,...,0,€V,ID(v,,...,v,) and
ul.vy,...,ul,vy then ID(u,v,,...,0,).

4. The representation theorem. In this section we shall investigate connec-
tions between quasisingular supspaces of (V, f) defined in Definition 1.12 and
the relation [,. At the beginning we have.
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DEFINITION 4.1. Let fe 2.%,(V, F). The set of all vectors of axes is the set
4.1.1) qV, ):= {veV: 3 ueV (ulv)}.

We recall that dim V = n. Now, from Lemma 3.11 we have

.COROLLARY 4.2. If fe 3.%,(V,F) and q(V, f) # & then dimLin(q(V, f)) <n.

Moreover, Definitions 1.12, 2.10, 2.14, 3.1, 4.1 and Corollaries 2.15, 3.2, 4.2
imply the following important ,

COROLLARY 43. If fe2%,(V,F) then the following conditions are
equivalent:
(i) (V, f) is not orthogonal,
(@) 1 <dimLin(g(V, /) <n-L

Consequently, with the help of the lemmas given in the preceding section
we may easily deduce the following

COROLLARY 44. If fe 2%,(V, F) and q(V, f) # & then t L Lin(q(V, f))
for every teV\Lin(gq(V, f)).

The above corollary shows that the subspace Lin(q(V, f)) is quasisingular
in (V, f). Moreover, this subspace is not singular because all vectors veq (¥, f)
are not isotropic. More precisely: if dimLin (g (V, f)) = k then there are vectors
Vy,...,0:€4(V, f) such that v, Lv,,...,0, L v, and Lin(v,,...,v,) = Lin(g (¥, f)).
This suggests the following

DEFINITION 4.5. Let fe 2%,(V, F). A subspace W < V is called a proper-
ly quasisingular subspace of (V, f) if and only if either W=, or W is
a quasisingular subspace of (V, f) generated by nonisotropic vectors. A maxi-
mal (in the sense of inclusion) properly quasisingular subspace of (V, f) will be
denoted by S(V, f).

As a simple consequence of Definitions 1.12, 4.1, 4.5 and Corollaries
4.2—4.4 we obtain the following important corollary.

COROLLARY 46. If fe 2%,(V, F) then

(46.1) SW,N<V,

4.6.2) VEZ=>SWV, /) +V,

63 STLf) = {Lin(q(V,f)) if 4V, f) # @,
& if 4V, f) = &,

(4.6.4) dmV< 1=5(V, /) = &,

(4.6.5) VueV\S(V,f) wLlS(,[)

and

4.6.6) VueV\S(V,f) VveSWV,f) (Lv=>ulyv).

Moreover, we may easily verify the following
COROLLARY 4.7. If fe2%,(V,F),u,v,weV then

4.1.1) v, w,0+wgS(V, f)=f(u,0+w) =f(u,v)+f(u, w)
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and
4.7.2) u, 0¢SV, f) AweSW, f)=f(u,v+w) =f(u, ).
Since by virtue of Corollary 1.4 and Definition 4.5 for any fe 2.%,(V, F)
a pair (S(V, ), fIS(V, f) x S(V, f)) is a quasiorthogonal space as well, then we
may consider S(S(V, f), fIS(V, f)x S(V, f)). Thus we may define the following
family of subspaces of V:
V when i =0,
@48.1) S, [):= .
SEi-1 (V2 1), f18:-1(V, N)xS8;4(V, f)) when ieN.

Now, the conditions (4.6.1)—(4.6.4) imply

(482 V==58,V, f)>5,V.f)>S8,(V.f)> ...
and
(4.8.3) VieN (S,_,(V.N)#D=S5,_,(V.1)# SV, ),

whence one can deduce (because the dimension of V is finite) that tﬁere exists
a unique natural number 7 such that S.(V, f)# & and S, ,(V, f)=&.

DEFINITION 4.8. Let fe 2%, (V, F). The natural number (f) determined
by the condition

(4.84) ©(f):= min{ieN: SV, f) = &}
is called the type of the functional f.
Note that
(4.8.5) 1<t(f) <dimV
and by Corollaries 4.3 and 4.6
(48.6) 1(f) = L= fe Z,(V, F).
Now, for the simplicity, for a given functional fe 2.%,(V, F) we put
(4.8.7) 7= t(f),
(4.8.8) Vii=S8S._(V,f) fori=0,1,..,1,
4.8.9) fir=flVixV, fori=1,..,r1
According to (4.8.2), (4.8.4), (4.8.7) and (4.8.8) we have
(4.8.10) D=Vo<V<..<V  <V.=V
‘Note that (4.8.6) and (4.8.9) imply
4.8.11) fi€%,(V,, F).

DEFINITION 4.9. Let fe2%,(V,F) and let 7(f)=t. The mappings
fL:VyxV,>F,.. f:V.xV,-»F uniquely determined by
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fi(u,v) when u¢V,_, or vé¢V,_,,

0 when u,veV,_,,

491  flu,n:= {

for i=1,...,7, are called components of the functional f.

Now, using Corollaries 4.6, 4.7, relations (4.8.1)—(4.8.4), (4.8.7), (4.8.8) and
Definition 4.9 we easily obtain the following

COROLLARY 4.10. The components of a quasibilinear functional are
bilinear.

Moreover, from Definition 4.5, Corollary 4.6, relations (4.8.7)—(4.8.9) and
Definition 4.9 we derive.

COROLLARY 4.11. If f€e 2%,(V,F), t =1(f), 1 > 1 and i€ {2,...,1} then
V,_, is the singular subspace of the orthogonal space (V;,f?.

Finally we can formulate the following representation theorem.

THEOREM 4.12. Let V be an n-dimensional vector space over a commutative
field F of characteristic different from 2. A mapping f: V x V— F is a quasibiline-
ar functional on V if and only if there exist a natural number <, subspaces
Vo Vis--s V. of V and symmetric bilinear functionals f':V,xV,>F,...,
[ : V.xV,— F such that the following conditions are satisfied:

)] 1 <1< dim¥,

(ii) G=V<W<..<Vau<V=¥

(iid) dmV> 1=dimV, > 1,

(iv) Vie{2,..,1} Vi, #V),

W) Vie{2,...,1} VueV,_, VveV, (fiu,v)=0),
(vi) Vie{l,...,t—1} 3u,veV, (fi(u,v)+#0)

and

(vii) if u,veV, u¢V,_, or véV,_,, then f(u,v) =f'(u,v)

for i=1,...,t and u,veV.

Proof. The implication “=>" results from Definitions 4.5, 4.9, Corollaries
4.10, 4.11, relations (4.8.3), (4.8.7), (4.8.8) and (4.8.10). On the other hand, the
implication “<=” can be obtained by an easy verification of Definition 1.1.

Moreover, by an easy verification, one can obtain the following

COROLLARY 4.13. Let fe3%,(V,F),n=dmV,t=1(f) and let
f1,....f* be components of f. If r,...,T, are the ranges of the bilinear functionals
fitsf° then

feN 2L, (V,F)<sr + ... +1,=n.

Appendix 1. Congruent quasibilinear functionals. Since for any bilinear
functional there exists an orthogonal basis of V then we can formulate the
representation theorem in the analytical manner as follows:
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COROLLARY. A mapping f: Vx V— F is a quasibilinar functional on V if
and only if there exist a natural number ©(f) = t called the type of f, a basis
{e}i=1...n Of V, natural numbers n,,...,n, and scalars &,,...,e,€F such that

) 1<t<n,

(i) O=in,<n, <..<n,=n,

(iid) Vke{l,..,t—1} 3ie{n,_,+1,...n} (5 #0)
and .

i) if y=v,=0 for i=n,+1,...,n and there exists ie{n,_,+1,...,n,} such
that u; # 0 or v;# 0 then f(U,v) = €y, + 1Une_ 1 +1Uney+1 F ooo F Epy U, Up,
Jor k=1,...,7 and u=(u,,...,u,), v = (vy,...,0)eV.
Moreover, f is nondegenerated if and only if ¢,#0 for i=1,...,n.
Each quasibilinear functional f in an orthogonal (with respect to f) basis
{e}i=1,...n is uniquely determined by the sequence ((&;,...,84,)s--s (Bpe_ g +15+--38)
and we denote shortly this canonical form of the functional fby (f)c,...., enys i€

(f)(ex ..... ) = ((61’---a3n1),---’(8n¢-1+1 ,...,8,,)).

Now we adopt the following

DEFINITION. We say that two quasibilinear functionals f,g of V are
congruent and we write f =~ g if and only if f and g determine the same relation
of orthogonality of vectors, ie.

fegel, =1, «Vu,veV(f(u,v)=0<g(u,v)=0).

In other words congruent functionals determine the same structure (V, L),
where L =1,= 1, called a weakly quasiorthogonal linear space. Since
a functional f is bilinear if and only if the conjunction u L ;v and u_L ,w implies
ul v+w for every u, v, we ¥, then for any congruent quasibilinear functionals
f, g on V the bilinearity of fis equivalent to the bilinearity of g. Moreover, it is
evident that if quasibilinear functionals f,g on V are congruent and if
{e}i=1...» is some basis of ¥ orthogonal with respect to f, then this basis is
orthogonal with respect to g as well.

a basis of V orthogonal with respect to f. By virtue of Corollary there are
natural numbers © = 1(f), « = 7(g), ny,...,n,, my,...,m, and scalars ¢,,...,é,,
@y5.cey Wy such that (f)(el.....e..) = «81,...,8,"),...,(8,,‘_‘4.1,...,8,‘)) and (g)(el.....c,.) =
((w.h LAid ] wml), seey (wm-—1+1! sees n)) Now putﬁng fk = fI(Lm (enk—1+1 ’ ""en))z
and g,:= g|(Lin(en_,+1,.---€,)> for k=1,...,1 we see that functionals
SlLin ey +15-r€m))% GilLin(en_,+15---»€n))> are bilinear and the func-
tionals £, |(Lin (en, _, +15++-> €ny s Emg+1))% Ge) LI (Ene_ 415+ Enys €m+1))? are not
bilinear for k=1,...,71—1 from ~which we deduce in turn
ng<my,...,n_y <m_,;, n, <m, and analogically m, <n,,....my_; <ny_,,
m, < n, and consequently v =a and n,=m, for k=1,...,7. Thus we have
(f)(ex wren) = ((81,...,8,"),...,(8,,'_ u"'sen» and (g)(ex ..... en) = ((wli--"wm)’"-a
(@5, _+1,-.,@,)). Let us note that the restrictions f*:= f|(Lin(e,,...,e, )%
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g':=g|(Lin(e,,...,e,))* are bilinear and f! = g'. Moreover (S Nerrreny =
((e15---+8,,) and (g')c, ..., eny = (@4, ..., 0, ). If &, = ... = ¢, = O then of cour-
sew; =..=w, =0and 0, =1,¢,...,0, = 48, for any A, e F\{0}. Now,
let us assume additionally that ¢, + 0 for some je{1,...,n,}. Therefore w, # 0
as well and we may put 4, := w,;(e)~*. We consider two possibilities. If n=1
then of course g' =1, f'. In the second case, if n, > 1, then for every
ie{l,...,n;}\{j} the inequality g # 0 implies w, # 0, fl(e;—e,, ge+ge)=0
and g'(e,;—e;, g;¢,+6e) =0 because f! =gl Since g'(e;—ep, 66, +82) =
w;&;— ;€ = gw;—A,8) = 0 then w; = 1,¢,. Thus for every ie{l,...,n,} we
have w, = A, ¢ and consequently g = A, f.

Analogically,  putting  (f?)¢e,.....eny = (0,...,0, &5, 41,-..,8,))  and
0 cervreny = (0sene, Dpy 41,5, 0,,) We deduce that £2 ~ g2 and that there is
A,€F\{0} such that w,,+, = Ay8s,+1,...,0,, = A,&, . Continuing this proce-
dure we obtain the following:

THEOREM. Iff, g are quasibilinear functionals on V,{e;},- ... , is a basis of
V orthogonal with respect to f and if (f)ce,.....ey = (gses8p)seees (Bneey +15-+028y)
then f,g are congruent if, and only if, the basis {e};~y. ., is orthogonal with
respect to g and there exist scalars 1,,...,4,€ F\{0} such that @)cer..nnreny =

(s 81seeer Ay sres By 1ees )

Appendix 2. Independence of axioms.

THEOREM. The axioms QBL,...,QB6 are independent.

Proof. To prove our theorem, for each QBi, where i e{l,...,6}, we
give a suitable field F,, a vector space ¥; and a mapping f;: V;x V;— F, such
that f; satisfies all the axioms QBI,...,QB6 except QBi. Since for every
ie{l,...,6} it is easy to verify that (¥, f) is 2 model of the axiom system
{QB1,...,QB6}\{QBi}, then we show only that f; does not satisfy QBi.

Firstly, for QB1 we adopt F,; =R, V; = RxR and f, (1, v) = ulv?—u?s! for
u=(u',u?, v=(v',v*)eV;. Then putting u =(1,0) and v = (0, 1) we have
fiu,v) =1 and f,(v,u) = —1. Thus QB1 does not hold.

For QB2 we put F, = Q(/2), ¥, = F, X F, and f,(u, v) = & v’ 4+ u? p? for
u,veV,, where a+b\/2 =a—b./2 for a,beQ. Now, putting u = p = (1,0)
and A = 1+4/2 we obtain f,(u, Av) = 1—/2 and Af,(u, v) = 1+/2 in spite of

B2.
? In all the remaining cases we adopt F =R and ¥V =RxR, ie. F,=R,
V;=RxR for i=3,4,56. Moreover, we put f,(u,)=/(u')?+u?)?-
JO)? + %) sgn @'v' +uv?) for u,ve Vyand u = v = (1, 0), w = (1, 1) and we
see that f3(u,v) =1#0, fi(u,w)= /2 #0 and f,(u, v+w) = JS #falu, )+
f3(u, w). Consequently, if we adopt
0  when u?? #0

fulu,0) = u? when 2 =0

2

v> when u?2=0
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for u,veV,u=(0,1),v=(0,1), w= (1, —1) we obtain f,(u, v) = f,(u, w) = 0,
fou,v+w) =10 and f,(v,v+w) =1 # 0. Further, putting

o ulp! +u?v?>  when u,v are linearly dependent
u, v) =
5 when u,v are linearly independent

for u,veV;, u=(1,0), v=(1,—1), w=(0,1) and we see that fs(u,v) =
fs(u, w) =fs(v,w) =0, fs(v, v) = 2 # 0 and f5(u, v+w) = 1 # 0. Finally, a map-
ping f; such that fi(u,0)=0 for u,veV is a degenerated quasibilinear
functional. This completes the proof of our theorem.
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