Fields and quadratic form schemes
Abstract
The paper presents a study of axiomatic theory of quadratic forms. Two operations on quadratic form schemes are investigated: the product of schemes and the group extension of schemes. The main result states that the product of schemes realized by fields is again realized by a field.
References
1. L. Brocker, Über die Anzahl der Anordnungen eines kommutativen Korpers, Arch. Math. 29 (1977), 458-464.
2. C.M. Cordes, Quadratic forms over non-real fields with a finite number of quaternion algebras, Pacific J. Math. 63 (1976), 357-366.
3. O. Endler, Valuation Theory, Springer-Verlag, New York 1972.
4. L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York—Paris 1963.
5. M. Kula, Fields with non-trivial Kaplansky’s radical and finite square class number, Acta Arith. 38 (1981), 411-418.
6. M. Kula, Fields with prescribed quadratic form schemes, Math. Z. 167 (1979), 201-212.
7. M. Kula, Ciala i schematy form kwadratowych (Fields and quadratic form schemes), Doctoral Thesis, Katowice 1979.
8. T.Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, Massachusetts 1973.
9. S. Lang, Algebra, Reading, Massachusetts, Addison-Wesley 1971.
10. M. Marshall, J. Yucas, Linked quaternionic mappings and their associated Witt rings, Pacific J. Math. 95 (1981), 411-425.
11. M. Marshall, Classification of finite spaces of orderings, Canad. J. Math. 31 (1979), 320-330.
12. A. Prestel, Remarks on the Pythagoreas and Hasse Number of Real Fields, J. Reine Angew. Math. 303/304 (1978), 284-294.
13. A. Sładek, Abstract Theory of Quadratic Forms, [w:] Prace matematyczne 10. Prace naukowe Uniwersytetu Śląskiego nr 332, pod red. K. Szymiczka, Katowice 1980, 46-57.
14. L. Szczepanik, Quaternion algebras and binary quadratic forms, [w:] Prace matematyczne 6. Prace naukowe Uniwersytetu Śląskiego nr 87, pod red. M. Kucharzewskiego, Katowice 1975, 17-27.
15. L. Szczepanik, Quadratic form schemes with non-trivial radical, (preprint).
16. L. Szczepanik, Fields and quadratic form schemes with the index of radical not exceeding 16, this issue.
2. C.M. Cordes, Quadratic forms over non-real fields with a finite number of quaternion algebras, Pacific J. Math. 63 (1976), 357-366.
3. O. Endler, Valuation Theory, Springer-Verlag, New York 1972.
4. L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York—Paris 1963.
5. M. Kula, Fields with non-trivial Kaplansky’s radical and finite square class number, Acta Arith. 38 (1981), 411-418.
6. M. Kula, Fields with prescribed quadratic form schemes, Math. Z. 167 (1979), 201-212.
7. M. Kula, Ciala i schematy form kwadratowych (Fields and quadratic form schemes), Doctoral Thesis, Katowice 1979.
8. T.Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, Massachusetts 1973.
9. S. Lang, Algebra, Reading, Massachusetts, Addison-Wesley 1971.
10. M. Marshall, J. Yucas, Linked quaternionic mappings and their associated Witt rings, Pacific J. Math. 95 (1981), 411-425.
11. M. Marshall, Classification of finite spaces of orderings, Canad. J. Math. 31 (1979), 320-330.
12. A. Prestel, Remarks on the Pythagoreas and Hasse Number of Real Fields, J. Reine Angew. Math. 303/304 (1978), 284-294.
13. A. Sładek, Abstract Theory of Quadratic Forms, [w:] Prace matematyczne 10. Prace naukowe Uniwersytetu Śląskiego nr 332, pod red. K. Szymiczka, Katowice 1980, 46-57.
14. L. Szczepanik, Quaternion algebras and binary quadratic forms, [w:] Prace matematyczne 6. Prace naukowe Uniwersytetu Śląskiego nr 87, pod red. M. Kucharzewskiego, Katowice 1975, 17-27.
15. L. Szczepanik, Quadratic form schemes with non-trivial radical, (preprint).
16. L. Szczepanik, Fields and quadratic form schemes with the index of radical not exceeding 16, this issue.
KulaM. (1985). Fields and quadratic form schemes. Annales Mathematicae Silesianae, 1, 7-22. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14333
Mieczysław Kula
Instytut Matematyki, Uniwersytet Śląski w Katowicach Poland
Instytut Matematyki, Uniwersytet Śląski w Katowicach Poland
The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.
- License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license. - Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. - User Rights
Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor. - Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.