JOANNA GER

ON ANALYTIC SOLUTIONS OF THE EQUATION
<pNe))= g{x,qtx)) (HI)

Abstract. In the present paper we deal with local analytic solutions of
the functional equation announced in the title. This paper is a continuation of
[2] and [3].

A. In the present paper we deal with local analytic solutions (abbre-

viated to a.s. in the sequel) of the functional equation

(E) <p(f()) = 9(x, <N9))

under such assumptions on the given functions / and g which do not
allow to obtain directly the explicit form of 5

Till now, such a problem has been posed mainly for the linear func-
tional equation (see [4], [5], [7]) and also for equation <p°% = g°<p, (see [6])
as well as for equation (E) (see [2], [3]). In the papers [2] and [3] we
made some restrictive assumptions regarding the function g. The func-
tion fif is a complex function defined and analytic in a neighbourhood of
the point (0,0)e C X C (where C is the field of all complex numbers)
and g(0, 0) —0. Thus g has the unique representation of the form

g{x,y) = U{X)+V(Y)+x-y G{X,y), [al < quW< &

where oit g2 denote certain positive real numbers; U, V are analytic func-
tions in the discs Kt = {xe C:|x|< j?i},Ka — {ye C:|y| < s2}, respecti-
vely, whereas G is an analytic function in the bidisc K1 X K2 In the pa-
pers [2] and [3] we made the assumption G(0, 0) Q.

The function g can be written in the form
g(X, y) - xpul)+ y*V(y)+x-y G{x,y)
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where p™ 1, g™ 2,p,ge Nland u(0)~ 0,v(0)=£0, and u, v denote ana-
lytic functions in the discs Kt and K2, respectively.

In this paper we adopt the following hypotheses about the given
function: the function g is of the form

() g(x, y) = xpu(x) +y(y)+x-y G(x,y),
where

(2 P> 1,

and

©) u(0) ~ 0, «(0) # 0,

and

4 G(0,0) = 0.

A complex function } is defined and analytic in a neighbourhood of the
point 0 e C and has zero of an order r at the origin, i.e.

(5) f(x) = xrF(x), [X| < e

where qg denotes a certain positive number, F is analytic in the disc
{xe C:|x| < q} and such that

(6) F(O)# 0,
and
M r> 2 reN.

In this paper we shall investigate the problem of the existence and
unigueness of local a.s. of equation (E) fulfilling the condition

®) 9K0) = 0

under the assumptions (1)—(7).

A nontrivial, local a.s. of equation (E) satisfying condition (8) may
be written in the form

9 <PpK) = x“3>(x), ae N
where 3> is an analytic function defined in a neighbourhood of zero and

4l )1t 0

Aocording to the theorem of Weierstrass ([1]) the function g given bj
the formula (1) can be written in the form

(11) g(x, y) = [y2+Ci(x) y + c2x)] h(x, y)
where ci; c2 are analytic functions in Kt such that

11In the whole paper N denotes the set of all positive integers.



(12) c,<0) = c20) = 0,
and h is an analytic function in Kx X K2 and such that
(13) h(0,0)"0.

The functions cl and ca can be written, according to condition (10), in
the form

(14) cl(x) = xsdi(x),

and

(15) c2(x) = xpd2(x)

where d1;d2 are the analytic functions in Kj and such that
(16) dj(0) » 0, d2(0) # 0.

Condition (4) implies that

a7 s> 2,

and besides that we have

(18) p>1.

Applying conditions (11), (14) and (15) to equation (E) we get
(19) <P(()) — P2+ xs aex) d](x)+xpd2Ax)l hix,rp(x)).
Applying substitutions (5), (9) to equation (19) we have

(20) xTa(x)ad(f(x)) — [xz2"t)2+ x ats<Ax) dx(x)+ x pd2(x)] h (X, X r<3$(X)).

REMARK 1. If a function <Pfulfilling conditions (9) and (10) is a solu-
tion of equation (19), then the corresponding function 0 (cf. (9) and (10))
satisfies equation (20). If a function 0 fulfilling condition (10) is a solu-
tion of equation (20) then the function 0 given by (9) satisfies equation
(29).

We omit a simple proof of this remark.

LEMMA 1. If there exists a formal solution of equation (20) of the
form (9) then

(la) 2a—ra=p< s+a; (7a) 2a = p< s+a’ra;
(2a) 2a = ra< s+a” p; (8a) 2a = p<Cra< s+a;
(3a) 2a = ra< p"O +3; (9a) p=s+a<2acx< ra;
(4a) p= sta< 2« = ra; (Ib) 2a=ra=s+a - p;
(5a) 2a s+a< ra™ p; (2b) 2a = s+a = ra< p;

(6a) 2a = s+ta< p<Cra; (3b) 2a = s+a = p< ra,

and a - "-incases (la), (7a), (8a); a = s in cases (5a), (6a), (Ib), (2b), (3b);

95



a—p—s in cases (4a) and (9a) and a is an arbitrary positive integer be-
longing to the interval [I,p—s) in the case (2a) provided s< p< 2s;
a is an arbitrary positive integer belonging to the interval [l,s) in the
case (2a) if p” 2s; in the case (3a) we have the following: if pe(2,s]

then a is an arbitrary positive integer belonging to the interval £1, yif
pe (s,2s) then a is an arbitrary positive integer belonging to the inter-
val |p -s.

Proof. Suppose, that for a positive integer a equation (20) has
a formal solution fulfilling condition (10), and suppose that e.g. 2a<
< a+s”™ p” ra. Equation (20) is now of the form

X (r-2aF (x)n 4>(f(x)) — [3>(X)2+ x s-a <P(X) dX(x)+
+ x p-2a d2(x)] h(x, x*“ <ZAX).

In this case we have r> 2, s> a, p> 2a. Putting x = 0 in equation
(21) we get «P(O2h(0,0) = 0 which contradicts (10) and (13). The second
part of our lemma results from the of cases (a) and (b).

To make the statement quite dear we shall draw up cases (a) and
(b) in the following table:

Forr= 2
if pe [2, 5], then cases (la) (for p even) and (3a) hold;
if pe (s, 2s), then cases (la) (for p even) and (3a) and (2a) hold;
if p = 2s, then cases (2a) and (Ib) hold;
if p> 2s, then cases (2a) and (4a) and (2b) hold.

For r> 2

if pe 2, 25\ >and p is even then the case (8a) holds;

2s

if pe T Zs\l, and p is even then the case (7a) holds;

if p = 2s, then the case (3b) holds;
if pe (2s, rs), then cases (6a) and (9a) hold;
if P~ rs, then cases (5a) and (9a) hold.

B.r=2

THEOREM 1. I If pe [2,2s) \ N and p is even i.e. p — 2k then equa-
tion (19) has locally exactly k+ 1 a.s. More precisely, there exist exactly
two solutions of the form

<FiY) = xk&i(x), i = 1,2,

where <& (i — 1, 2) are analytic functions in a neighbourhood of zero and
such that numbers &i(0) —tji9" 0 (i = 1,2) satisfy the equation

r?h(0, 0 ) - JF(0)k+ d2(0) h(0, 0) = O:
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for an arbitrary ae [1, fc) <N there exists locally exactly one a,s. of the
form

(22) y{x) = xa(x)

where is an analytic function in a neighbourhood of zero and sv-ch
that

(23) ,0,=,=- "

. If p is odd i.e. p = 2fc+l then for an arbitrary ae[l, f]
equation (19) has locally exactly one a.s. This solution is of the form (22)
and r satisfies equality (23).

Pro of. If p€ [2,2s) and p = 2fc then cases (la) and (3a) hold. In
virtue of Remark 1, it suffices to consider equation (20) only. Assuming
(la) we get, according to Lemma 1, that a = k and we obtain the follo-
wing form of equation (20)

(24) F(x)'; &{f(x)) = [0(x)3-t-xs~k <E(X) di(x) + d2(X)] h(x, xk <P(x)).

Write H(x,y,z) 1= F()ky —[22+xs~kz di(x)+dAx)] h[x, xk2).

With the aid of this definition, equation (24) is of the form
H(x, &(f{x)), 0(x)) = 0.

By (10), (20) and the condition f(0) = 0 we obtain the equality

(25) HO,V,?) = FiOfn-W +dsm h(0,0) = 0

as a necessary condition of t)he existence of a solution of equation (20).
Since

4 f-0v. )= ~2Vh(0,Q) ¥=0,

according to conditions (10) and (13), by means of the implicit function
theorem, there exists a neighbourhood of the point (o, rji) and (o, %),
where tjif A2 are the roots of equation (25), in which equation (20) may
equivalently be written in the form

&i(x) = Ki(x, ®i(f(x))),

where Kt denote certain analytic function in this neighbourhood fulfilling
the conditions K{0, r]i) = (i=.1,2). Now, our assertion results from
W. Smajdor’s Theorem (see [s], [9]).

If case (3a) holds then, according to Lemma 1, a is an arbitrary po-
sitive integer belonging to the interval [1, fc). Equation (20) is now of
the form

X 2F(x)ab(f(x)) — [x2'$(x)2+ x -1s<&X) d2Ax)+ x pd2(x)] h(x, xQB(X)).
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On account of a< k < s, it gives
(26) F(X)a<P(f(x)) = [<P()2+ xs-"@(X) d1(x)+ xp~2d2(x)] h(x, X">P(x)).

Write
H(x,y,z):= F(X)ay~[z2Jrxs- asz «d*cc) + x p~Zd2(x)] h{x, x"'Z).

By (10), (20) and (5) we have
H (O, rj, i) —F(0)"t]—d2h(0, 0) = 0.

From (10) we obtain

Since
-1f-(0,V-V) = -2r]h(0,0)» 0O

according to (10) and (13), the implicit function theorem may be applied
to equation (26) and it suffices, as previously, to make use of W. Smaj-
dor’s Theorem. The proof of the second part of our assertion is the same.

THEOREM 2. If p = 2s then equation (19) has locally at least s a.s.
and at most s+1 a.s. More precisely:

I. For an arbitrary ae[l,s)« N there exists locally one as. of the
form (22) with (23).

Il. There exists at least one a.s. of the form

(27) cp(X) = xs<I>(¥)

where 0 is an analytic function in a neighbourhood of zero and $(0) =
satisfies the equation

(28) >f h{0, 0) + ~[dj(0) h(0, 0)-F (0)s]+ h(0, 0) d2(0) = O.
i If
(29) [dj(0) h(0, 0)-F(0)s]2 = 4d2(0) h(0, 0)2
then equation (19) has exactly s a.s. s—1 of them are of the form (22)
with (23) and one is of the form (27) and satisfies condition

(30) =

IV. If condition (29) is not satisfied then equation (19) has at least
s a.s. and at most s+1 a.s. s—1 solutions are of the form (22) with (23)
and one is of the form (27) with (28).

V. If

and

(31) di(0) [dX0) h{0, 0)—2F(0)S] =# 4d2(0) h(0, 0)

[di(0) h(0, 0)-F (0)s]2=5* 4d2(0) h(0, 0)2



then equation (19) has locally exactly s+1 a.s. s—1 solutions are of the
form (22) with (23) and two solutions are of the form

cpi(x) = xs$i{x) i= 1,2

where $i, <® are analytic functions in a neighbourhood of zero and such
that the numbers 3>i(0) —ni, i — 1,2, satisfy equation (28).

Proof. If p = 2s, then cases (2a) and (Ib) hold. According to Lem-
ma 1, we have a€[l,s) in case (2a) and a = s in case (Ib). We omit
a simple proof of this theorem in case (2a). Suppose that case (Ib) holds.
Then equation (20) have the form

(32) F(X)0(f(x)) = [<PX)2 r<&x) di(x) + d2(x)] h(x, x s<P(X)).

H(x, y.z):
then equality

(33) H(O,V,v) = - neh(0, 0)+v [F(0)s—di(0) h(0,0)]-d20) h(0,0) = 0
occurs as a necessary condition of the existence of a solution of equa-
tion (20).

If condition (29) holds then equation (32) has a double root rj given

by the formula (29). By the definition of the function H and by (5), (10)
we get

F(X)sy —[z2+ z'd I(x) + d2(x)] h(x, xs-2)

f-(0,0v)= 1-2v-4%0)] HO, o,

For

we have
(>V\o, W) = 0.

In this case, condition (31) ensures that each of roots of equation (33) is
different from i]0. The implicit function theorem may be applied to equa-
tion (32) and it suffices, as previously, to apply W. Smajdor’s Theorem.
Using Remark 1 we obtain two different solutions of equation (19). The
proof of Theorem 2 is finished.

THEOREM 3. If p !> 2s then equation (19) has locally at least s a.s.
and at most s+1 a.s. More precisely,

I If

d™0) h(0, 0) .= F(0)*

then the equation (19) has locally exactly s a.s. One solution is of the
form

(34) c{X) = xp~s&(x)
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where $ is on analytic function in a neighbourhood of zero and such
that

(35) #(0)
for an arbitrary ae[l,s) there exists locally one as. of the form (22)
with (23).
1. If
(36) dx(0) h(0, 0) # F(0)*

then equation (19) has at least s a.s. and at most s+ 1 a.s., one solution
is of the form (34) with (35), s—1 solutions are of the form (22) with (23).
1. If condition (36) is satisfied and

di(0) h(0, 0)  2F(0y

then equation (19) has exactly s+ 1 a.s. One solution is of the form (22)
with (23) and one solution is of the form (27) with (30).

Proof of this theorem is the same as that of Theorem 2. So, we omit
this proof.

C.r> 2

THEOREM 4. I. If p6[2,25) '\ N and p = 2k, then equation (19)
has locally exactly two a.s. These solutions are of the form

<p(*) = Xk$i(X), i=1,2,

where are analytic functions in a neighbourhood of zero and such that
<P,0) = ni, i = 1, 2, satisfy equation t2+d20) = 0.

Il. If pe[2,25) NN and p = 2k+ I, then equation (19) has no solu-
tions.

Proof. Ifp N and p = 2k, the case (8a) holds. Accor-

ding to Lemma 1, we have a = k in this case. Equation (20) assumes now
the form (rk » s+ k> p)

(37) xrk~pF(x)k &(f(x)) = [&(X)2+ xs~k <P(x) dj(x)+d2(&;)] h(x, x k <P(X)).

Write
H(x, y,z): = xrk~pF(xX)ky —[z2+ xs-k*z-d1(x) + d2(x)] h{x, xk-z).

With the aid of this definition, equation (37) has the form

H(x, ${f(x)), ${x)) = 0.
We have

H(,v.v)= ~[v2+d2m h(0,0),
and

©,v,v)= -2VHO,0)"0.
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The implicit function theorem may be applied to equation (37) and it
suffices to use W. Smajdor’s Theorem.

The proof in the case pe 1~ quite similar. The latter part

of our assertion results from Lemma 1 and from the table for r> 2
THEOREM 5. If p = 2s and if di(0) ="4(~(0), then equation (19) has
locally exactly two a.s. These solutions are of the form

<A = xs0i(x), i - 1,2,

where <2 are analytic functions in a neighbourhood of zero and such
that the numbers 4(0) = rji, i = 1, 2, satisfy equation

v2+v d2(0)+di(0) = 0.

THEOREM 6. If p> 2s then equation (19) has locally exactly two
a.s. These solutions are of the form

<Pi(x) = xp~s&i{x),
<Pr) = Fs#*(¥)
where <% <2 are analytic functions in a neighbourhood of zero and such
that

Q)= - £$
and
«2<0) = -d,(0).

We omit simple proofs of Theorems 5 and 6.

REMARK 2. The question of the number of solutions of equation
(19) remains unsolved in cases

p=2sr1=2 a=s,
with conditions

[di(0) h(0, 0)-F(0)*]* dfe 4d*(0) h(0, 0)*,
dj(0) [dj(O) k(0,0)-2F(0)«] = 4da(0) h(0, 0)
and
(i) p> 25, r=2 a—s
with the condition
d,(0) h(0,0) = 2F(0)S

REMARK 3. The question of lhe existence of the solutions of equa-
tion (19) in the case where
(iiyp=2s, r> 2, a—s
and
diw = 4d2(0)
still remains unsolved.
These situations were considered in paper [3].
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