
JOANNA GER

ON ANALYTIC SOLUTIONS OF THE EQUATION
< p № ) ) =  g { x , q t x ) )  ( H I )

A b s t r a c t .  In  th e  p resen t pap e r w e deal w ith  local ana ly tic  solutions of 
th e  functional equation  announced in  th e  title . This p ap e r is a  continuation  of 
[2] and  [3].

A. In the present paper we deal w ith local analytic solutions (abbre­
viated to a.s. in the sequel) of the functional equation

(E) <p(f(x)) = 9(x, <№))

under such assumptions on the given functions /  and g which do not 
allow to obtain directly the explicit form of <p.

Till now, such a problem has been posed m ainly for the linear func­
tional equation (see [4], [5], [7]) and also for equation <p°j =  g°<p, (see [6 ]) 
as well as for equation (E) (see [2], [3]). In the papers [2] and [3] we 
made some restrictive assumptions regarding the function g. The func­
tion fif is a complex function defined and analytic in  a neighbourhood of 
the point (0, 0) e  C X C (where C is the field of all complex numbers) 
and g(0, 0) — 0. Thus g has the unique representation of the form

g{x, y) =  U {x)+ V (y)+ x-y  G{x, y), |ar| <  qu \y\ <  q2,

where oit q2 denote certain positive real numbers; U, V  are analytic func­
tions in the discs K t = {x  e  C : |x| <  j?i},K2 — { y e  C : |y| <  5 2 }, respecti­
vely, whereas G is an analytic function in the bidisc K 1 X K2. In the pa­
pers [2 ] and [3] we made the assumption G(0, 0) 0.

The function g can be w ritten in the form

g(x, y) -  x p u (x ) +  y*v(y )+ x-y  G{x, y)
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where p ^  1, q ^  2, p, q e  N1 and u(0) ^  0, v(0) =£ 0, and u, v  denote ana­
lytic functions in  the discs K t and K 2, respectively.

In this paper we adopt the following hypotheses about the given 
function: the function g is of the form

(1) g(x, y) =  x pu(x) +  y 2v (y )+ x -y  G(x, y), 
where

(2) P >  1, 
and

(3) u(0) ^  0, «(0) #  0, 
and

(4) G(0, 0) =  0.

A complex function } is defined and analytic in  a neighbourhood of the 
point 0 e  C and has zero of an order r  at the origin, i.e.

(5) f(x) =  x rF(x), |x| <  e

where q denotes a certain positive number, F is analytic in the disc 
{x e  C : |x| <  q} and such tha t

(6) F(0) #  0, 
and
(7) r  >  2, r e N .

In this paper we shall investigate the problem of the existence and 
uniqueness of local a.s. of equation (E) fulfilling the condition

(8) 9K0) =  0

under the assumptions (1)—(7).
A nontrivial, local a.s. of equation (E) satisfying condition (8) may 

be w ritten in  the form

(9) <p(x) =  x “3>(x), a e  N

where 3> is an analytic function defined in a neighbourhood of zero and 
such that

(10) <2>(0) =  : v  #  0.
Aocording to the theorem of W eierstrass ([1]) the function g given bj 
the formula (1) can be w ritten  in the form

(11) g(x, y) =  [y2+Ci(x) y +  c2(x)] h(x, y) 

where ci; c2 are analytic functions in K t such that

1 In the w hole paper N  denotes the set of all positive integers.



(12) c,<0) =  c2(0) =  0,

and h is an analytic function in K x X K2 and such tha t

(13) h(0,0 ) ^ 0 .

The functions c1 and ca can be written, according to condition (10), in 
the form

(14) c1(x) =  x sd1(x), 

and

(15) c2(x) =  x pd2(x)

where d1; d2 are the analytic functions in Kj and such that

(16) dj(0) ^  0, d2(0) #  0.

Condition (4) implies that

(17) s >  2, 

and besides that we have

(18) p > l .

Applying conditions (11), (14) and (15) to equation (E) we get

(19) <p(f(x)) — [q>{x)2+ x s qc(x) d ](x )+xpd2(x)l h{x,rp(x)).

Applying substitutions (5), (9) to equation (19) we have

(20) x TaF(x)a0(f(x)) — [xz"<t>{x)2+ x a+s<P(x) dx(x)+ x pd2(x)] h(x,xr,<$(x)).

REMARK 1. If a function <P fulfilling conditions (9) and (10) is a solu­
tion of equation (19), then the corresponding function 0  (cf. (9) and (10)) 
satisfies equation (20). I f a function 0  fulfilling condition (10) is a solu­
tion of equation (20) then the function 0  given by  (9) satisfies equation 
(19).

We omit a simple proof of this remark.
LEMMA 1. If there exists a formal solution of equation (20) of the  

form  (9) then

(la) 2a — ra = p <  s +  a; (7a) 2a =  p <  s +  a ^ r a ;
(2a) 2a =  ra <  s +  a ^  p; (8a) 2a =  p <C ra <  s+a ;
(3a) 2a =  ra <  p ^O  +  a; (9a) p =  s +  a < 2 a <  ra;
(4a) p =  s +  a <  2« =  ra; (lb) 2a =  ra =  s +  a -  p;
(5a) 2a s +  a <  ra ^  p; (2b) 2a =  s +  a =  ra <  p;
(6a) 2a =  s +  a <  p <C ra; (3b) 2a =  s +  a =  p <  ra,

and a -  ^-incases  (la), (7a), (8a); a = s in cases (5a), (6a), (lb), (2b), (3b);
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a — p —s in cases (4a) and (9a) and a is an arbitrary positive integer be­
longing to the interval [ l , p —s) in  the case (2a) provided s <  p <  2s; 
a is an arbitrary positive integer belonging to the interval [ l ,s) in the 

case (2a) if p ^  2s; in the case (3a) we have the following: if  p e ( 2 , s ]

then a is an arbitrary positive integer belonging to the interval £l, ; if

p e  (s, 2s) then a is an arbitrary positive integer belonging to the inter-

val | p - s.

P r o o f .  Suppose, that for a positive integer a equation (20) has 
a formal solution fulfilling condition (10), and suppose that e.g. 2a <
<  a + s  ^  p ^  ra. Equation (20) is now of the form

x (r~2)a F(x)n 4>(f(x)) — [3>(x)2+ x s-a <P(x) dx(x)+
+ x p-2a d2(x)] h(x, x “ <Z>(x)).

In this case we have r >  2, s >  a, p >  2a. Putting x  =  0 in equation
(21) we get «P(O)2 h(0,0) =  0 which contradicts (10) and (13). The second 
part of our lemma results from the of cases (a) and (b).

To make the statem ent quite d e a r  we shall draw  up cases (a) and 
(b) in  the following table:

For r =  2:
if p e  [2, s], then cases (la) (for p even) and (3a) hold;
if p e  (s, 2s), then cases (la) (for p even) and (3a) and (2a) hold;
i f  p = 2s, then cases (2a) and (lb) hold;
if p >  2s, then cases (2a) and (4a) and (2b) hold.

For r >  2:

if p e  

if p e

if p = 2s, then the case (3b) holds;
if p e  (2s, rs), then cases (6a) and (9a) hold;
if P ^  rs, then cases (5a) and (9a) hold.

B. r =  2.
THEOREM 1. I. If p e  [2,2s) r\ N and p is even i.e. p — 2k then equa­

tion (19) has locally exactly  k + 1 a.s. More precisely, there exist exactly 
two solutions of the form

<Pi(x) = x k&i(x), i = 1,2,

where <&i (i — 1, 2) are analytic functions in a neighbourhood of zero and 
such that numbers &i(0) — tji 9^ 0 (i =  1,2) satisfy the equation

r?h(0, 0 ) - J?F(0)k +  d2(0) h(0, 0) =  0;

2s \2, > and p is even then the case (8a) holds;

2s \----- —, 2s , and p is even then the case (7a) holds;r — 1 I
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for an arbitrary a e  [1, fc) <"> N there exists locally exactly one a,s. of the 
form

(22) y{x) =  xa0(x)

where is an analytic function in a neighbourhood of zero and sv-ch 
that

(23) „ 0 ,  =  ,  =  - ^ .

II. If p is odd i.e. p =  2fc+ l then for an arbitrary a e [ l ,  fc] 
equation (19) has locally exactly one a.s. This solution is of the form  (22) 
and 17 satisfies equality (23).

P r o  of. If p €  [2, 2s) and p =  2fc then cases (la) and (3a) hold. In 
virtue of Remark 1 , i t  suffices to consider equation (20) only. Assuming 
(la) we get, according to Lemma 1, tha t a = k and we obtain the follo­
wing form of equation (2 0 )

(24) F(x)'; &{f(x)) = [0(x)3-t-xs~k <£(x) di(x) +  d2(x)] h(x, x k <P(x)).

Write
H(x, y , z ) : = F(x)ky  — [z2+ x s~k z d1(x)+ d2(x)] h[x, x k z).

With the aid of this definition, equation (24) is of the form

H(x, &(f{x)), 0(x)) =  0.

By (10), (20) and the condition f(0) =  0 we obtain the equality

(25) H(0, V, ?]) = F iO fn - W  + d s m  h(0, 0) =  0

as a necessary condition of t)he existence of a solution of equation (2 0 ). 
Since

4 f  - (0, V, rj) =  ~ 2 Vh(0,Q) ¥= 0,

according to conditions (10) and (13), by means of the implicit function 
theorem, there exists a neighbourhood of the point (0 , rji) and (0 , %), 
where tjlf r\2 are the roots of equation (25), in which equation (20) may 
equivalently be w ritten  in the form

&i(x) =  Ki(x, ®i(f(x))),

where K t denote certain analytic function in  this neighbourhood fulfilling 
the conditions K {(0, r]i) =  ( i= .  1,2). Now, our assertion results from 
W. Smajdor’s Theorem (see [8 ], [9]).

If case (3a) holds then, according to Lemma 1, a is an arbitrary po­
sitive integer belonging to the interval [1, fc). Equation (20) is now of 
the form

x 2,F(x)a$(f(x)) — [x2"$(x)2 +  x -1 s<&(x) d2(x)+ x pd2(x)] h(x, xQB(x)).
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On account of a <  k  <  s, it gives

(26) F(x)a<P(f(x)) = [<P(x)2+ x s-"@(x) d1(x )+ xp~2ad2(x)] h(x, x">P(x)). 

Write
H(x, y , z ) : =  F(x)ay ~ [ z 2Jr x s- a • z • d^cc) +  x p~Zad2(x)] h{x, x"'Z). 

By (10), (20) and (5) we have

H(0, rj, rj) — F(0)"t]—t]2 h(0, 0) =  0.

From (10) we obtain
_  F(0)a7] -----

HO, o) ‘
Since

- I f  - (0, V- V) =  - 2 r]h(0, 0) ^  0

according to (10) and (13), the implicit function theorem may be applied 
to equation (26) and it suffices, as previously, to make use of W. Smaj- 
dor’s Theorem. The proof of the second part of our assertion is the same.

THEOREM 2. If p =  2s then equation (19) has locally at least s a.s. 
and at most s+ 1  a.s. More precisely:

I. For an arbitrary a e [ l , s ) « N  there exists locally one a.s. of the 
form  (22) w ith  (23).

II. There exists at least one a.s. of the form

(27) cp(x) =  x s<I>(x)

where 0  is an analytic function in a neighbourhood of zero and $(0) =   ̂
satisfies the equation

(28) >f h{0, 0) +  ̂ [dj(0) h(0, 0 )-F (0 )s] + h(0, 0) d2(0) =  0.

III. If

(29) [dj(0) h(0, 0 )-F (0 )s]2 =  4d2(0) h(0, 0)2

then equation (19) has exactly s a.s. s — 1 of them are of the form  (22) 
with  (23) and one is of the form  (27) and satisfies condition

(30) =

IV. I f condition (29) is not satisfied then equation (19) has at least 
s a.s. and at most s+ 1  a.s. s — 1 solutions are of the form  (22) w ith  (23) 
and one is of the form  (27) w ith  (28).

V. If
[di(0) h(0, 0 )-F (0 )s]2 =5* 4d2(0) h(0, 0)2

and

(31) di(0) [dx(0) h{0, 0)—2F(0)S] =# 4d2(0) h(0, 0)



then equation (19) has locally exactly  s+ 1  a.s. s — 1 solutions are of the 
form  (22) w ith  (23) and two solutions are of the form

cpi(x) = x s$i{x) i =  1,2

where $ i, <&2 are analytic functions in a neighbourhood of zero and such 
that the numbers 3>i(0) — r\i, i — 1,2, satisfy equation (28).

P r o o f .  If p =  2s, then cases (2a) and (lb) hold. According to Lem­
ma 1, we have a € [ l , s )  in case (2a) and a =  s in case (lb). We omit 
a simple proof of this theorem in case (2a). Suppose tha t case (lb) holds. 
Then equation (20) have the form

(32) F(x)s0(f(x)) = [<P(x)2 'r <&(x) di(x) +  d2(x)] h(x, x s<P(x)).

H(x, y ,z ) :  = F(x)sy — [z2+ z 'd l(x) + d2(x)] h(x, x s-z) 
then equality

(33) H(0, V, v) =  -  r)2 h(0, 0) + v [F(0)s—di(0) h(0, 0 ) ] -d 2(0) h(0, 0) =  0

occurs as a necessary condition of the existence of a solution of equa­
tion (20).

If condition (29) holds then equation (32) has a double root rj given 
by the formula (29). By the definition of the function H and by (5), (10)
we get

- | f - ( 0 , 17, v ) =  1 ~ 2 V - d ^ O ) ]  H O ,  0 ).

For

we have

(°> Vo, Vo) = 0.

In this case, condition (31) ensures that each of roots of equation (33) is 
different from i]0. The implicit function theorem m ay be applied to equa­
tion (32) and it suffices, as previously, to apply W. Smajdor’s Theorem. 
Using Remark 1 we obtain two different solutions of equation (19). The 
proof of Theorem 2 is finished.

THEOREM 3. If p !> 2s then equation (19) has locally at least s a.s. 
and at most s+ 1  a.s. More precisely,

I. If
d^O) h(0, 0) .= F(0)*

then the equation (19) has locally exactly s a.s. One solution is of the  
form

(34) cp{x) =  x p ~s& ( x )
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where $  is on analytic function in a neighbourhood of zero and such 
that

(35) #(0)

for an arbitrary a e [ l , s )  there exists locally one a.s. of the form  (22) 
w ith  (23).

II. If

(36) dx(0) h(0, 0) #  F(0)*

then equation (19) has at least s a.s. and at m ost s +  1 a.s., one solution 
is of the form  (34) w ith  (35), s —1 solutions are of the form  (22) w ith  (23).

III. If condition (36) is satisfied and

di(0) h(0, 0) 2F(0y

then equation (19) has exactly s +  1 a.s. One solution is of the form  (22) 
with  (23) and one solution is of the form  (27) w ith  (30).

Proof of this theorem is the same as that of Theorem 2. So, we omit 
this proof.

C. r >  2.
THEOREM 4. I. I f p 6  [2, 2s) r\ N and p =  2k, then equation (19) 

has locally exactly two a.s. These solutions are of the form

<p,(*) =  x k$i(x), i =  1,2,

where are analytic functions in a neighbourhood of zero and such that 
<P;(0) =  rji, i = 1, 2, satisfy equation t}2+ d 2(0) =  0.

II. If p e  [2, 2s) r\ N and p =  2k +  l, then equation (19) has no solu­
tions.

P r o o f .  If p N and p =  2k, the case (8a) holds. Accor­

ding to Lemma 1, we have a =  k  in this case. Equation (20) assumes now 
the form (rk ^  s +  k >  p)

(37) x rk~p F(x)k &(f(x)) = [&(x)2+ x s~k <P(x) d j(x )+ d2(a;)] h(x, x k <P(x)).

Write
H(x, y ,z ) :  = x rk~p F(x)ky  — [z2+ xs-k *z-d1(x) +  d2(x)] h{x, x k -z).

W ith the aid of this definition, equation (37) has the form

H(x, ${f(x)), ${x)) =  0.
We have

H (0 ,v .v )=  ~ [v 2+ d2m  h(0,0),
and

(0, v ,v )=  - 2 V HO, 0 ) ^ 0 .
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The implicit function theorem m ay be applied to equation (37) and it 
suffices to use W. Smajdor’s Theorem.

The proof in the case p e  1 ^  quite similar. The la tter part

of our assertion results from Lemma 1 and from th e  table for r >  2.
THEOREM 5. I f  p =  2s and if di(0) =7̂  4(^(0), then equation (19) has 

locally exactly two a.s. These solutions are of the form

<Pi{x) =  x s 0i(x), i - 1,2,

where <P2 are analytic functions in a neighbourhood of zero and such 
that the numbers 4>t(0) = rji, i =  1, 2, satisfy equation

v2+v d1(0)+di (0) =  0.

THEOREM 6. I f p >  2s then equation (19) has locally exactly two  
a.s. These solutions are of the form

<Pi(x) =  xp~s &i{x),
<Pz(x) =  *s #*(*)

where <f>x, <P2 are analytic functions in  a neighbourhood of zero and such 
that

* ‘<0) =  -  £ $ •
and

«?2<0) =  -d ,(0 ).

We omit simple proofs of Theorems 5 and 6.
REMARK 2. The question of the number of solutions of equation

(19) remains unsolved in  cases
(i) p =  2s, r  =  2, a = s, 

w ith conditions

[di(0) h(0, 0)-F(0)*]* gfe 4d*(0) h(0, 0)*, 
dj(0) [dj(O) k(0,0)-2F(0)«] =  4da(0) h(0, 0)

and
(ii) p >  2s, r  =  2, a — s 

w ith the condition
d,(0) h(0,0) =  2F(0)S.

REMARK 3. The question of 1he existence of the solutions of equa­
tion (19) in the case where

(iii) p =  2s, r  >  2, a — s
and

d i W  =  4d2(0)
still remains unsolved.

These situations were considered in paper [3].
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