Generators and co-generators of substitution semigroups



Abstract

In this note we give the form of generators and co-generators of semigroups of „substitution operators” in Banach space C([a,b]). We also establish some properties of these operators related to Schröder equation.


1. J. Aczél, Lectures on functional equations and their applications, Academic Press New York-London 1966.
2. B.Sz. Nagy, C. Foiaş, Harmonic analysis of operators on Hilbert space, North Holland Amsterdam-London and Akadémiai Kiadó Budapest 1970.
3. Gy. Targoński, Problem: Infinitesimal generators and co-generators of iteration groups, Aequationes Math. 11 (1974), 314.
4. K. Yosida, Functional analysis. Springer, Berlin, Heidelberg, New York 1974.
5. M.C. Zdun, Differentiable fractional iteration, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 643-646.
6. M.C. Zdun, Continuous and differentiable iteration semigroups, Prace Naukowe UŚ nr 308 (1979).
Download

Published : 1985-09-30


TargońskiG., & ZdunM. C. (1985). Generators and co-generators of substitution semigroups. Annales Mathematicae Silesianae, 1, 169-174. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14348

Győrgy Targoński 
Marek Cezary Zdun 
Katedra Matematyki, Filia Politechniki Łódzkiej w Bielsku-Białej  Poland



The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.

  1. License
    This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.
  2. Author’s Warranties
    The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s.
  3. User Rights
    Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor.
  4. Co-Authorship
    If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.