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GENERATORS AND CO-GENERATORS
OF SUBSTITUTION SEMIGROUPS

Abstract. In this note we give the form of generators and co-generators
of semigroups of ,substitution operators” in Banach space C([o, b]). We also esta-
blish some properties of these operators related to Schroder equation.

0. Introduction. Let us assume that:

(i) f is defined and continuous in [a, b] (*) (we admit b = °0), stric-
tly increasing and of class Ciin [a, b), f’(a) =0, furthermore x < f(x) < b
for x € [a, b) (b is therefore a fixed point of /).

THEOREM 0.1 ([5], [¢]). Let {f, t> 0} be an iteration semigroup
°f /(**) such that all f are continuous in [a, b] and of class Clin [a, b).
Then:

1° The following representation is valid

(0.1) f‘x) = hfr+h-"x)), t> 0, xe[a,b),
where h maps [0, °0) onto [a, b) in a strictly increasing way. Moreover,
h is of class Clin [0, °0) and h*1is of class Clin [a, b).

2° All functions f, t> 0 satisfy (i).
3° The derivative

(0.2) g(x) : = - [t=0, x e [a, b],

exists, g(b) —o, g is continuous in [a, b] and g> o in (a, b).
4° The integral

diverges.
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(*) continuity at b = oo is equivalent to saying that lim f(x) = oo.

(**) i.e. Ma, b]) C [a, b], = ft+s for t,s> 0 and f1=".
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All -semigroups considered in this paper satisfy the assumptions of

Theorem 0.1.
Let now

(0.4) Tip:= (pop, t> 0

be a semigroup of operators (,,substitution operators”) on C([a, b]) with
the sup-norm (***).

In this paper, we shall determine first the form and some properties
of the infinitesimal generator of the semigroup (0.4), the same investiga-
tion on the co-generator will be caried and next out.

1. Infinitesimal generators. We consider the infinitesimal generator
of a semigroup (0.4)

(1.2) Ap:=lim —— @
t-*o+ 1

(in the sense of the norm) defined in a domain D(A). As it is well known,
D(A) is dense and A is closed (cf. [4]). Denoting the range of A by R(A),
we prove:

THEOREM 1.1.

D(A) .= {e C([a b]) CJ([a b)): lim <p'(x) g(x) - 0},
R(A) = {y,eg-C ([a b)) « C<[a b]):

b u
y(b) = o and the improper integral j g(u) ex*sts anc™ % fin” e}

a

(")) =»(X),"(X), Xs [«;b)

and

Proof. From Theorem 1in [4, Ch. IX. §84] it follows, that | —A has
an inverse J = (I—A)-1 defined on C([a, b]) and continuous. Moreover

@

Kp—| e-t (T’ dt
0

in the sense of the Riemann integral in the Banach space C([a, b]). Fur-
thermore we have ([4, Ch. IX, Cor. 2])

(1.3) AJ =J-I.

As seen above D(J) —C([a, b]) and R(J) —D(A). Put := Jcp, where
<pe C ([a, b]). From (1.2) and (0.1) we have

(***) if b = oo, then C ([a, 6]) denotes the space of all continuous and bounded

functions h in [a, 00) such that the finite limit lim h(x) exists, [Jh|]| =sup [h(X)].
X-+b— x e la, b)



upe) = J e“t<p(f(x)) dt = J e=* <p{h(t+h~1(x))) dt =
0 0

00 @
— J eh-<x)-u9("(u))qu = eh*x) J e~* gp{h(u)) du.
n>D h-*m
From this it follows that y eC([o,b]) Ctyfa, b)). Further differentiat-

ing both sides of the last equality we get yj'(x) = for x e [a, h),

since (hrl)' — 1/g. Hence g(x)yj'(x) —yj(x)—<p() for xe[a,b) (py>g C([a,
b])). From the definition of y>it follows that yj{b) = <p(b). (p and y>being
continuous at b, it follows that the limit of g(x)yj'(x) at b exists and
equals zero. Furthermore (see (1.3)) Al<p = Jcp—tp and this implies Ay —
yj—p= o> in [a, b). From this
A _ gV in [aib)
(0 in b,
for y=e R(J) = D(A).
From our discussion it follows that
(1.4) D(A)C {(pe C([a,b]) CHfa, b)) : lim <p'(x)g(x) = 0}.
X “mb—
We denote the set on the right-hand side of (1.4) by K. Let y>e K.
Then

n S mi-r\ ¢ = 9(x), xe [a b)
(I bj >m  |v(b), X =Dhb
belongs to C([a, b]).

Put
(1.6) ip: = Jcpe D(A) C K.

By (1.3), Ay) = ip —p, therefore g(x)ip'{x) —ij>(x)—<p(x) for xe [a, b) and
0 = ip(b)—<pf). Hence

n nv = Jy(x)-y (X) flf(x), x e [a b)

(n v () (v(b), x = h.

Put oo = y>—ip, then by (1.5) and (1.7),

co{x) o'(x) 9(x), x e [a, b)
[

and (oeK. So w(x) = cexpJ du xe [a,b). If ¢ o, then from (0.3) it

a N
follows that [lim w(x) = £°0, but u>eK, so it is bounded in [o,b],
X Fop_—
therefore ¢ = 0 and w(x) = 0; hence m= y= Now from (1.6) it follows
that yj€ D{A), thus K = D(A).
The formula for R(A) can be verified directly.



2. Co-generators. The notion of co-generator of a semigroup of ope-
rators (in Hilbert space) has ben introduced by B. Sz. Nagy and C. Foia§
(see [2, Ch. Ill, s] and [3]). We generalize this notion to Banach space.

Let X be a Banach space, {T‘t> 0} be a continuous semigroup
with infinitesimal generator A. From the properties of the resolvent it
follows, that A—I has an inverse —J —(A—l)-1 defined in all X and
continuous. Moreover, (1.3) holds. Therefore we can define the co-gene-
rator

2.1) T: =.(A+1) (A—)-1

defined in all X. From (1.3) it follows that T = —(I+A)J = —J—AJ =
— 1—2J. T is continuous. Let T* be given by (0.4). We now determine the
co-generator for Tf. Let s€ C([a, b]). Put := (A—I)-19? so ipGK. From
(A—) = 99 follows, that

(2.2) P — —Xp+xp'g

in [a, b] has exactly one solution because of 4° in Theorem 0.1. This so-
lution is
(2.3) y>) = J exp— J I/g(t) dt 1 duexp J I/g{u) du.

a \ a / a

Then, T(p —(A+ 1) ip —gtp'+yj — 2yj+ap, s0

a a a

Remembering (0.1), we can write
fc-
() (x) = <PK) +2 eh~(x) f(X) <p(h()) e-t dt
(2.5)

a

Put u(x) —e~h 1) in (2.5) and (0.1). Then fI(x) = u_1 [e-t u(x)], for t> 0
(2.6)

Where u satisfies the Schroder equation u(f(x)) = e-1 u(x).

3. Some properties of the infinitesimal generator. Consider A, the
infinitesimal generator of our semigroup. According to the expression for
A given in Theorem 1.1, Aft = Af2implies /1—/2 = const. So, A is "inver-
tible up to an additive constant”. We introduce the linear operator

172



We restrict the domain of B in such a way that D(B): —R(A). It is
easy to verify that then R(B) = {99 € D(A):93a) = 0}, B is invertible and

(31) B 1 —A|RB).
THEOREM 3.1.
(3.2) BP X) = J <p&(x)) dt+ I~ du,
0 a
for pe D(B). . b
Proof. Let <peR(A). In the integralJ du (it exists as an im-

proper integral according to our assumption) we can put (because of (0.1)
and (02)) g= substituting u = h(t+ h-1(x)) we obtain

| ri>(h{trh~1(x))) dt = (' <p{P{Y) di.

Farther we find (3.2) by definition of B. Introducing
(3.3) Cep: = J>(/*(-))dt
0

we can define (according to Theorem 3.1) C on D(B) = :D(C). From (3.1)
it follows that AC — 1 in D(B). We have thus obtained.

COROLLARY 3.1. C defined by (3.3) has the property AC =1 in
D{C).

We are now going to consider some properties of C.

THEOREM 3.2. C(<pofs) = (Cp)o/», s>0.

Proof.

C(pofs) = | <p(fs(ft(x))) dt = | o2(/t(/s(X))) dt = (C<p)ol.
0 0
An immediate consequence is.
COROLLARY 3.2: If tpeD(C) satisfies a Schroder equation

(3.4) @ f(x)) = $?(x), for an s> 0,

then C(p satisfies the same equation.

Another observation concerning the Schroder equation is the follo-
wing.

THEOREM 3.3. Let ipeD(C), then the following two statements are
equivalent:

(@) « is eigenfunction of C.

(b) For every t> 0 there exists a such that

99(f(x)) = )tp(X).
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Proof, (a)=>(b):Let sse D(C) and Ctp = 0) then AC<p=
= fiAg), but AC = | in D(C), so = fiAtp —g<p'in [a, b) (see Theorem 1.1).
This differential equation has exactly one-parameter family of solutions:

<PX) = Kexp %j’(l/,q(m) du.

u

One finds (cf. (0.1) and (0.2)) <p(xX) —k exp —h-1(x). From (0.1) we have

h~1(f(x)) = t+h~1x)t> 0,x e [a, b)). From this it is easily verifiable that
< satisfies (b).

(b) =>(a). From the definition, X is determined uniquely. For all
t, s> o we have <pfft+s(x)) = X+t pfpd), moreover from (b) follows
ft+s{x)) = = Ap((f(x)) = Xly(x).

Thus A+S= XX (t,s> 0).

The continuity of t—=X now follows from Theorem 0.1 and from
the continuity of q Therefore (cf. [1] p. 38) since X" o (), Xt —y\
for some fixed y> 0. So cpfft{x)) = JV(X). t>0, ie[«,b). Now GCep—

@ @

~ J <PEKX) dE = J Yi<p(x)dt. Thus C(p = pg? and (a) is satisfied with ju ~
0 0
a

= J/ dt. Since < is continuous in b, the inequality o < y<C:1 must be

0
satisfied, thus the integral defining ju exists.
In closing we remark: it follows from our above considerations that
the spectrum of C is the interval (—oo0, 0).

(**») Xt = 0 would imply = 0 (cf. (b) in Theorem 3.3), but this is impossible.
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