GENERATORS AND CO-GENERATORS OF SUBSTITUTION SEMIGROUPS

Abstract. In this note we give the form of generators and co-generators of semigroups of "substitution operators" in Banach space C ($[a, b]$). We also establish some properties of these operators related to Schröder equation.
0. Introduction. Let us assume that:
(i) f is defined and continuous in $[a, b]\left(^{*}\right)$ (we admit $b=\infty$), strictly increasing and of class C^{1} in $[a, b), f^{\prime}(a) \neq 0$, furthermore $x<f(x)<b$ for $x \in[a, b)$ (b is therefore a fixed point of f).

THEOREM 0.1 ([5], [6]). Let $\left\{f^{t}, t>0\right\}$ be an iteration semigroup of $f\left({ }^{* *}\right)$ such that all f^{t} are continuous in $[a, b]$ and of class C^{1} in $[a, b)$. Then:
1° The following representation is valid

$$
\begin{equation*}
f^{t}(x)=h\left(t+h^{-1}(x)\right), t>0, x \in[a, b) \tag{0.1}
\end{equation*}
$$

where h maps $[0, \infty)$ onto $[a, b)$ in a strictly increasing way. Moreover, h is of class C^{1} in $[0, \infty)$ and h^{-1} is of class C^{1} in $[a, b)$.
2° All functions $f^{t}, t>0$ satisfy (i).
3° The derivative

$$
\begin{equation*}
g(x):=\left.\frac{\partial f^{t}(x)}{\partial t}\right|_{t=0}, x \in[a, b] \tag{0.2}
\end{equation*}
$$

exists, $g(b)=0, g$ is continuous in $[a, b]$ and $g>0$ in (a, b).
4° The integral
diverges.

$$
\begin{equation*}
\int_{a}^{b} \frac{\mathrm{~d} u}{g(u)} \tag{0.3}
\end{equation*}
$$

Received November 06, 1979.
AMS (MOS) subject classification (1980). Primary 47H17. Secondary 39B10.
$\left(^{*}\right)$ continuity at $b=\infty$ is equivalent to saying that $\lim f(x)=\infty$.

$$
x \geq{ }^{\infty}
$$

${ }^{(* *)}$ i.e. $f^{t}([a, b]) \subset[a, b], f^{t} \circ f^{s}=f^{t+s}$ for $t, s>0$ and $f^{1} \stackrel{x}{=} \stackrel{\infty}{+\infty}$.

All semigroups considered in this paper satisfy the assumptions of Theorem 0.1.

Let now

$$
\begin{equation*}
T^{t} \varphi:=\varphi \circ f^{t}, t>0 \tag{0.4}
\end{equation*}
$$

be a semigroup of operators (,,substitution operators') on $C([a, b])$ with the sup-norm (${ }^{* * *)}$.

In this paper, we shall determine first the form and some properties of the infinitesimal generator of the semigroup (0.4), the same investigation on the co-generator will be caried and next out.

1. Infinitesimal generators. We consider the infinitesimal generator of a semigroup (0.4)

$$
\begin{equation*}
A \varphi:=\lim _{t \rightarrow 0+} \frac{\mathrm{T}^{t}-I}{t} \varphi \tag{1.1}
\end{equation*}
$$

(in the sense of the norm) defined in a domain $D(A)$. As it is well known, $D(A)$ is dense and A is closed (cf. [4]). Denoting the range of A by $R(A)$, we prove:

THEOREM 1.1.

$$
\begin{gathered}
D(A)=\left\{\varphi \in C([a, b]) \cap C^{1}([a, b)): \lim _{x \rightarrow b-} \varphi^{\prime}(x) g(x)=0\right\}, \\
R(A)=\{\psi \in g \cdot C([a, b)) \cap C([a, b]):
\end{gathered}
$$

and

$$
\left.\psi(b)=0 \text { and the improper integral } \int_{a}^{b} \frac{u}{g(u)} \mathrm{d} u \text { exists and is finite }\right\}
$$

$$
(A \varphi)(x)= \begin{cases}g(x) \varphi^{\prime}(x), & x \in[a, b) \\ 0, & x=b\end{cases}
$$

Proof. From Theorem 1 in [4, Ch. IX. §4] it follows, that $I-A$ has an inverse $J=(I-A)^{-1}$ defined on $C([a, b])$ and continuous. Moreover

$$
J \varphi=\int_{0}^{\infty} \mathrm{e}^{-t}\left(\mathrm{~T}^{\prime} \varphi\right) \mathrm{d} t
$$

in the sense of the Riemann integral in the Banach space $C([a, b])$. Furthermore we have ([4, Ch. IX, Cor. 2])

$$
\begin{equation*}
A J=J-I . \tag{1.3}
\end{equation*}
$$

As seen above $D(J)=C([a, b])$ and $R(J)=D(A)$. Put $\psi:=J \varphi$, where $\varphi \in C$ ($[a, b]$). From (1.2) and (0.1) we have

[^0]\[

$$
\begin{aligned}
\psi(x) & =\int_{0}^{\infty} \mathrm{e}^{-t} \varphi\left(\mathrm{f}^{t}(x)\right) \mathrm{d} t=\int_{0}^{\infty} \mathrm{e}^{-t} \varphi\left(h\left(t+h^{-1}(x)\right)\right) \mathrm{d} t= \\
& =\int_{h^{-1}(x)}^{\infty} \mathrm{e}^{h^{-1}(x)-u} \varphi(h(u)) \mathrm{d} u=\mathrm{e}^{h^{-1}(x)} \int_{h^{-1}(x)}^{\infty} \mathrm{e}^{-u} \varphi(h(u)) \mathrm{d} u .
\end{aligned}
$$
\]

From this it follows that $\psi \in C([a, b]) \cap C^{2}([a, b))$. Further differentiating both sides of the last equality we get $\psi^{\prime}(x)=\frac{\psi(x)-\varphi(x)}{g(x)}$ for $x \in[a, b)$, since $\left(h^{-1}\right)^{\prime}=1 / g$. Hence $g(x) \psi^{\prime}(x)=\psi(x)-\varphi(x)$ for $x \in[a, b)(\varphi, \psi \in C([a$, $b])$). From the definition of ψ it follows that $\psi(b)=\varphi(b) . \varphi$ and ψ being continuous at b, it follows that the limit of $g(x) \psi^{\prime}(x)$ at b exists and equals zero. Furthermore (see (1.3)) $A J \varphi=J \varphi-\varphi$ and this implies $A \psi=$ $\psi-\varphi=g \psi^{\prime}$ in $[a, b)$. From this

$$
A \psi= \begin{cases}g \psi^{\prime} & \text { in }[a, b) \\ 0 & \text { in } b,\end{cases}
$$

for $\psi \in R(J)=D(A)$.
From our discussion it follows that

$$
\begin{equation*}
D(A) \subset\left\{\varphi \in C([a, b]) \cap C^{1}([a, b)): \lim _{x \rightarrow b-} \varphi^{\prime}(x) g(x)=0\right\} . \tag{1.4}
\end{equation*}
$$

We denote the set on the right-hand side of (1.4) by K. Let $\psi \in K$. Then

$$
\varphi(x):= \begin{cases}\psi(x)-\psi^{\prime}(x) g(x), & x \in[a, b) \tag{1.5}\\ \psi(b), & x=b\end{cases}
$$

belongs to $C([a, b])$.
Put

$$
\begin{equation*}
\bar{\psi}:=J \varphi \in D(A) \subset K \tag{1.6}
\end{equation*}
$$

By (1.3), $A \bar{\psi}=\bar{\psi}-\varphi$, therefore $g(x) \bar{\psi}^{\prime}(x)=\bar{\psi}(x)-\varphi(x)$ for $x \in[a, b)$ and $0=\bar{\psi}(b)-\varphi(b)$. Hence

$$
\varphi(x)= \begin{cases}\bar{\psi}(x)-\bar{\psi}(x) g(x), & x \in[a, b) \tag{1.7}\\ \bar{\psi}(b), & x=b .\end{cases}
$$

Put $\omega=\psi-\bar{\psi}$, then by (1.5) and (1.7),

$$
\omega(x)= \begin{cases}\omega^{\prime}(x) g(x), & x \in[a, b) \\ 0, & x=b\end{cases}
$$

and $\omega \in K$. So $\omega(x)=c \exp \int_{a}^{x} \frac{d u}{g(u)}, x \in[a, b)$. If $c \neq 0$, then from (0.3) it follows that $\lim \omega(x)=\stackrel{a}{ \pm} \infty$, but $\omega \in K$, so it is bounded in $[a, b]$, $x \rightarrow b$ -
therefore $c=0$ and $\omega(x) \equiv 0$; hence $\bar{\psi}=\psi$. Now from (1.6) it follows that $\psi \in D(A)$, thus $K=D(A)$.

The formula for $R(A)$ can be verified directly.
2. Co-generators. The notion of co-generator of a semigroup of operators (in Hilbert space) has ben introduced by B. Sz. Nagy and C. Foiaş (see [2, Ch. III, 8] and [3]). We generalize this notion to Banach space.

Let X be a Banach space, $\left\{T^{t}, t>0\right\}$ be a continuous semigroup with infinitesimal generator A. From the properties of the resolvent it follows, that $A-I$ has an inverse $-J=(A-I)^{-1}$ defined in all X and continuous. Moreover, (1.3) holds. Therefore we can define the co-generator

$$
\begin{equation*}
\mathrm{T}:=(A+I)(A-\mathrm{I})^{-1} \tag{2.1}
\end{equation*}
$$

defined in all X. From (1.3) it follows that $T=-(I+A) J=-J-A J=$ $=I-2 J . T$ is continuous. Let T^{t} be given by (0.4). We now determine the co-generator for Tt. Let $\varphi \in C([a, b])$. Put $\psi:=(A-I)^{-1} \varphi$, so $\psi \in K$. From $(A-I) \psi=\varphi$ follows, that

$$
\begin{equation*}
\varphi=-\psi+\psi^{\prime} g \tag{2.2}
\end{equation*}
$$

in [a,b] has exactly one solution because of 4° in Theorem 0.1. This solution is

$$
\begin{equation*}
\psi(x)=\int_{a}^{x} \frac{\varphi(u)}{g(u)}\left(\exp -\int_{a}^{u} 1 / g(t) \mathrm{d} t\right) \mathrm{d} u \exp \int_{a}^{x} 1 / g(u) \mathrm{d} u \tag{2.3}
\end{equation*}
$$

Then, T $\varphi=(A+I) \psi=g \psi^{\prime}+\psi=2 \psi+\varphi$, so

$$
\begin{equation*}
(T \varphi)(x)=\varphi(x)+2 \exp \int_{a}^{x} 1 / g(u) \mathrm{d} u \int_{a}^{x} \frac{\varphi(u)}{g(u)}\left(\exp -\int_{a}^{u} 1 / g(t) \mathrm{d} t\right) \mathrm{d} u . \tag{2.4}
\end{equation*}
$$

Remembering (0.1), we can write

$$
\begin{align*}
& (\mathrm{T} \varphi)(x)=\varphi(x)+2 \mathrm{e}^{h^{-1}(x)} \int_{0}^{h^{-1}(x)} \varphi(h(t)) \mathrm{e}^{-t} \mathrm{~d} t= \tag{2.5}\\
& =\varphi(x)-2 e^{h^{-1}(x)} \int_{a}^{x} \varphi(s)\left[\mathrm{e}^{-h^{-1}(s)}\right]^{\prime} \mathrm{d} s .
\end{align*}
$$

Put $u(x)=e^{-h^{-1}(x)}$ in (2.5) and (0.1). Then $f^{t}(x)=u^{-1}\left[e^{-t} u(x)\right]$, for $t>0$ and

$$
\begin{equation*}
(T \varphi)(x)=\varphi(x)-\frac{2}{u(x)} \int_{0}^{x} \varphi(s) u^{\prime}(s) \mathrm{d} s \tag{2.6}
\end{equation*}
$$

where u satisfies the Schröder equation $u(f(x))=e^{-1} u(x)$.
3. Some properties of the infinitesimal generator. Consider A, the infinitesimal generator of our semigroup. According to the expression for A given in Theorem 1.1, $A f_{1}=A f_{2}$ implies $f_{1}-f_{2}=$ const. So, A is "invertible up to an additive constant". We introduce the linear operator

$$
(B \psi)(x):=\int_{a}^{x} \frac{\psi(u)}{g(u)} \mathrm{d} u
$$

We restrict the domain of B in such a way that $D(B):=R(A)$. It is easy to verify that then $R(B)=\{\varphi \in D(A): \varphi(a)=0\}, B$ is invertible and

$$
\begin{equation*}
B^{-1}=A_{[R(B)} \tag{3.1}
\end{equation*}
$$

THEOREM 3.1.

$$
\begin{equation*}
(B \varphi)(x)=\int_{0}^{\infty} \varphi(f t(x)) \mathrm{d} t+\int_{a}^{b} \frac{\varphi(u)}{g(u)} \mathrm{d} u \tag{3.2}
\end{equation*}
$$

for $\varphi \in D(B)$.
Proof. Let $\varphi \in R(A)$. In the integral $\int_{x}^{b} \frac{\varphi(u)}{g(u)} \mathrm{d} u$ (it exists as an improper integral according to our assumption) we can put (because of (0.1) and (0.2)) $g=h^{\prime} \circ h^{-1}$; substituting $u=h\left(t+h^{-1}(x)\right.$) we obtain

$$
\int_{0}^{\infty} p\left(h\left(t+h^{-1}(x)\right)\right) \mathrm{d} t=\int_{0}^{\infty} \varphi(f(x)) \mathrm{d} t
$$

Further we find (3.2) by definition of B. Introducing

$$
\begin{equation*}
C \varphi:=\int_{0}^{\infty} \varphi(f t(\cdot)) \mathrm{d} t \tag{3.3}
\end{equation*}
$$

we can define (according to Theorem 3.1) C on $D(B)=: D(C)$. From (3.1) it follows that $A C=I$ in $D(B)$. We have thus obtained.

COROLLARY 3.1. C defined by (3.3) has the property $A C=I$ in $D(C)$.

We are now going to consider some properties of C.
THEOREM 3.2. $C\left(\varphi \circ f^{s}\right)=(C \varphi) \circ f^{s}, s>0$.
Proof.

$$
C(\varphi \circ f s)=\int_{0}^{\infty} \varphi(f s(f t(x))) \mathrm{d} t=\int_{0}^{\infty} \varphi(f t(f s(x))) \mathrm{d} t=(C \varphi) \circ f s
$$

An immediate consequence is.
COROLLARY 3.2. If $\varphi \in D(C)$ satisfies a Schröder equation

$$
\begin{equation*}
\varphi(f(x))=s \varphi(x), \text { for an } s>0 \tag{3.4}
\end{equation*}
$$

then $C \varphi$ satisfies the same equation.
Another observation concerning the Schröder equation is the following.

THEOREM 3.3. Let $\varphi \in D(C)$, then the following two statements are equivalent:
(a) φ is eigenfunction of C.
(b) For every $t>0$ there exists a λ_{t} such that

$$
\varphi\left(f^{t}(x)\right)=\lambda_{t} \varphi(x)
$$

Proof. (a) $\Rightarrow(\mathrm{b})$: Let $\varphi \in D(C)$ and $C \varphi=\mu \varphi(\mu \neq 0)$ then $A C \varphi=$ $=\mu A \varphi$, but $A C=I$ in $D(C)$, so $\varphi=\mu A \varphi=g \varphi^{\prime}$ in [a,b) (see Theorem 1.1). This differential equation has exactly one-parameter family of solutions:

$$
\varphi(x)=k \exp \frac{1}{\mu} \int_{a}^{x} 1 / g(u) \mathrm{d} u .
$$

One finds (cf. (0.1) and (0.2)) $\varphi(x)=k \exp \frac{1}{\mu} h^{-1}(x)$. From (0.1) we have $\left.h^{-1}\left(f^{t}(x)\right)=t+h^{-1}(x) t>0, x \in[a, b)\right)$. From this it is easily verifiable that φ satisfies (b).
(b) \Rightarrow (a). From the definition, λ_{t} is determined uniquely. For all $t, s>0$ we have $\varphi\left(f^{t+s}(x)\right)=\lambda_{s+t} \varphi(x)$, moreover from (b) follows

$$
\varphi\left(f^{t+s}(x)\right)=\varphi\left(f^{t}\left(f^{s}(x)\right)\right)=\lambda_{t} \varphi\left(f^{s}(x)\right)=\lambda_{t} \lambda_{s} \varphi(x) .
$$

Thus $\lambda_{t+s}=\lambda_{t} \lambda_{s}(t, s>0)$.
The continuity of $t \rightarrow \lambda_{t}$ now follows from Theorem 0.1 and from the continuity of φ. Therefore (cf. [1] p. 38) since $\lambda_{t} \neq 0\left({ }^{* * * *)}\right.$, $\lambda_{t}=\gamma^{t}$, for some fixed $\gamma>0$. So $\varphi\left(f^{t}(x)\right)=\gamma^{t} \varphi(x), t>0, x \in[a, b)$. Now $C \varphi=$ $=\int_{0}^{\infty} \varphi\left(f^{t}(x)\right) \mathrm{d} t=\int_{0}^{\infty} \gamma^{t} \varphi(x) \mathrm{d} t$. Thus $C \varphi=\mu \varphi$ and (a) is satisfied with $\mu=$ $=\int_{0}^{\infty} \gamma^{t} \mathrm{~d}$. Since φ is continuous in b, the inequality $0<\gamma<1$ must be satisfied, thus the integral defining μ exists.

In closing we remark: it follows from our above considerations that the spectrum of C is the interval $(-\infty, 0)$.
(****) $\lambda_{t}=0$ would imply $\varphi=0$ (cf. (b) in Theorem 3.3), but this is impossible.

REFERENCES

[1] J. ACZEL, Lectures on functional equations and their applications, Academic Press New York-London 1966.
[2] B. SZ. NAGY, and C. FOIAS, Harmonic analysis of operators on Hilbert space, North Holland Amsterdam-London and Akadémiai Kiado Budapest 1970.
[3] GY. TARGONSKI, Problem Infinitesimal generators and co-generators of iteration groups, Aequationes Math. 11 (1974), 314.
[4] K. YOSIDA, Functional analysis. Springer, Berlin, Heidelberg, New York 1974.
[5] M. C. ZDUN, Differentiable fractional iteration, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 643-646.
[6] M. C. ZDUN, Continuous and differentiable iteration semigroups, Prace Naukowe US nr 308 (1979).

[^0]: ${ }^{(* * *)}$ if $b=\infty$, then $C([a, b])$ denotes the space of all continuous and bounded functions h in $[a, \infty)$ such that the finite limit $\lim h(x)$ exists, $\|h\|=\sup \mid h(x) \|$. $x \rightarrow b-\quad x \in[a, b)$

