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GENERATORS AND CO-GENERATORS 
OF SUBSTITUTION SEMIGROUPS

A b s t r a c t .  In  th is note we give the  form  of generators and co-generators 
of sem igroups of „substitu tion  op era to rs” in  B anach space C([o, b]). We also e s ta 
blish some p roperties of these operators re la ted  to Schroder equation.

0. Introduction. Let us assume that:
(i) f  is defined and continuous in [a, b] (*) (we admit b =  °o), stric

tly increasing and of class C1 in  [a, b), f ’(a) =7̂  0, furtherm ore x  <  f(x) <  b 
for x  €  [a, b) (b is therefore a fixed point of /).

THEOREM 0.1 ([5], [6 ]). Let { f ,  t  >  0} be an iteration semigroup 
° f  /(**) such that all f  are continuous in  [a, b] and of class C1 in  [a, b). 
Then :

1° The following representation is valid 
(0 .1 ) f ‘(x) = hfr + h -^x)), t >  0, x e [ a , b ) ,

where h maps [0, °o) onto [a, b) in a strictly increasing way. Moreover, 
h is of class C1 in  [0, °o) and h*1 is of class C1 in  [a, b).

2° All functions f ,  t >  0 satisfy  (i).
3° The derivative

(0 .2 ) g(x) : =  -  |t= 0, x e  [a, b],

exists, g(b) — 0 , g is continuous in [a, b] and g >  0  in  (a, b).
4° The integral

diverges.
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(*) continu ity  a t  b =  oo is equ ivalen t to  saying th a t lim  f(x)  =  oo.

(**) i.e. M a , b]) C  [a, b], =  f t+s fo r t, s >  0 and f 1 = ^ .
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All -semigroups considered in this paper satisfy the assumptions of 
Theorem 0.1.

Let now

(0.4) Tip : =  (pop, t >  0

be a semigroup of operators („substitution operators”) on C([a, b]) w ith 
the sup-norm (***).

In this paper, we shall determ ine first the form and some properties 
of the infinitesimal generator of the semigroup (0.4), the same investiga
tion on the co-generator will be caried and next out.

1 . Infinitesimal generators. We consider the infinitesimal generator 
of a semigroup (0.4)

T‘— I
(1.1) A<p : =  lim —-— cp

t-*o+ 1

(in the sense of the norm) defined in a domain D(A). As it is well known, 
D(A) is dense and A  is closed (cf. [4]). Denoting the range of A  by R(A), 
we prove:

THEOREM 1.1.

D(A) .= {<p e  C ([a, b]) CJ([a, b) ) : lim <p'(x) g(x) -  0},

R(A) = { y , e g - C  ([a, b)) «  C<[a, b ] ) :

b u
y(b) =  0  and the improper integral j  g(u) ex*sts anc  ̂ *s fin^ e}

a
and

( ^ ) (l ) = j»(X) „ ' (X), X 6 [«; b)

P r o o f .  From Theorem 1 in [4, Ch. IX. § 4] it follows, that I —A  has 
an inverse J =  (I—A ) - 1 defined on C([a, b]) and continuous. Moreover

oo
J<p — | e-t (T’<p) dt 

o

in the sense of the Riemann integral in the Banach space C([a, b]). Fur
therm ore we have ([4, Ch. IX, Cor. 2])

(1.3) A J = J - I .

As seen above D(J) — C([a, b]) and R(J) — D(A). P u t : =  Jcp, where 
<p e  C ([a, b]). From (1.2) and (0.1) we have

(***) if b = oo, th en  C ([a, 6 ]) denotes th e  space of all continuous an d  bounded 
functions h  in [a, oo) such th a t th e  fin ite  lim it lim  h(x) exists, |]h|| = s u p  |h(x)|.

x - + b — x  e  la,  b)



%p(x) =  J e“t <p(f (x)) dt =  J e~* <p{h(t+h~l(x))) d t =
o o

oo go

— J eh-<x)-u9,(^(u)) <ju =  eh-*(x) J  e~“ qp{h(u)) du. 
n->(D h-*m

From this it follows that y  eC ([o ,b ]) Ctyfa, b)). Further differentiat

ing both sides of the last equality we get yj'(x) =  for x  e  [a, b),

since (h r 1)' — 1/g. Hence g(x)yj'(x) — yj(x)—<p(x) for x e [ a , b )  (cp,y> g C([a, 
b])). From the definition of y> it follows that yj{b) =  <p(b). (p and y> being 
continuous at b, it follows that the limit of g(x) yj'(x) at b exists and 
equals zero. Furtherm ore (see (1.3)) AJ<p = Jcp—tp and this implies A y  —
yj—<p = gy>' in [a, b). From this

A  _  \g y  in  [a, b)[gili' in  [a,i 
( 0  in b,

for y> e  R(J) = D(A).
From our discussion it follows that

(1.4) D (A )C  {(p e  C([a, b]) CHfa, b)) : lim <p'(x)g(x) =  0}.
x  -*■ b—

We denote the set on the right-hand side of (1.4) by K. Let y>e K. 
Then
/1 S'» mi-r\ • =  9(x), X e  [a, b)
(l bj > ■ | v (b), x  = b
belongs to C([a, b]).

Put
(1.6) ip : =  Jcpe D(A) C  K.

By (1.3), Ay) = ip —(p, therefore g(x)ip'{x) — ij>(x)—<p(x) for x e  [a, b) and
0 =  ip(b)—<p{b). Hence
n  nv =  J y ( x ) - y  (x) flf(x), x e  [a, b)
( n  v ( )  (v(b), x  = b.

Put co =  y>—ip, then by (1.5) and (1.7),

co{x) {co' 

0 ,
(x) g(x), x  e  [a, b) 

x  — b

du
and (o e K .  So w(x) =  c exp J -  x  e  [a, b). If c ^  0 , then from (0.3) it

a ^
follows that lim w(x) = ±°o , but u>eK,  so it is bounded in [o, b],

x -*• b —
therefore c =  0 and w(x) =  0; hence rp = y>. Now from (1.6) it follows 
that yj €  D{A), thus K  = D(A).

The formula for R(A)  can be verified directly.



2. C o -g e n e r a to r s .  The notion of co-generator of a semigroup of ope
rators (in H ilbert space) has ben introduced by B. Sz. Nagy and C. Foia§ 
(see [2 , Ch. Ill, 8 ] and [3]). We generalize this notion to Banach space.

Let X be a Banach space, {T‘, t >  0} be a continuous semigroup 
with infinitesimal generator A. From the properties of the resolvent it 
follows, that A —I has an inverse —J  — (A—I ) - 1  defined in all X and 
continuous. Moreover, (1.3) holds. Therefore we can define the co-gene
rator

defined in all X. From (1.3) it follows that T = —( I + A ) J  =  —J —AJ  =
— I —2J. T  is continuous. Let T* be given by (0.4). We now determine the 
co-generator for Tf. Let 95 €  C([a, b]). P u t : =  (A —I)- 19?, so ip G K.  From 
(A—I) xp =  99 follows, that

in [a, b] has exactly one solution because of 4° in Theorem 0.1. This so
lution is

P u t u(x) — e~h 1(I) in (2.5) and (0.1). Then f l(x) =  u _ 1  [e- t u(x)], for t  >  0

Where u satisfies the Schroder equation u(f(x)) =  e - 1  u(x).
3 . S o m e  p r o p e r t ie s  o f  t h e  in f in i t e s im a l  g e n e r a to r .  Consider A, the 

infinitesimal generator of our semigroup. According to the expression for 
A given in Theorem 1.1, A f t = A f 2 implies / 1 — / 2 =  const. So, A is "inver
tible up to an additive constant”. We introduce the linear operator

(2.1) T : =. ( A+I )  (A —I) - 1

(2.2) qo — — xp+xp'g

(2.3) y>(x) =  J
a \ a  /  a

e x p — J  l/g(t) dt I du exp J  l/g{u) du.

Then, T(p — (A +  I) ip — gtp'+yj — 2yj+qp, so

a a a

Remembering (0.1), we can write
fc-'(x)

(T<p) (x) =  <p(x) +2 eh~,(x) f  <p(h(t)) e - t  dt
(2.5)

a

(2.6)
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We restrict the domain of B in such a way that D (B): — R(A). It is 
easy to verify tha t then R(B) =  {99 €  D (A ) : 93(a) =  0}, B is invertible and

(31) B 1 — A|R(B).

THEOREM 3.1.

(3.2) (.B<p) (x) =  J  <p&(x)) d t+  J ^  du,
0 a

for <p e  D(B). . b
P r o o f .  Let <peR(A).  In the integral J  du (it exists as an im

proper integral according to our assumption) we can put (because of (0 .1 ) 
and (0 .2 )) g =  substituting u  =  h(t +  h - 1(x)) we obtain

o c 00

| rf>(h{t-r h~1(x))) dt =  (" <p{P{x)) di.
0 0

F arther we find (3.2) by definition of B. Introducing
00

(3.3) Cep: =  J > ( / ‘(-))d t
0

we can define (according to Theorem 3.1) C on D(B) =  : D(C). From (3.1) 
it follows tha t AC — I in D(B). We have thus obtained.

COROLLARY 3.1. C defined by (3.3) has the property AC = I in 
D{C).

We are now going to consider some properties of C.
THEOREM 3.2. C(<pofs) =  (Cp)o/», s > 0 .
P r o o f .

00 00

C(pofs) = I  <p(fs(ft(x))) dt =  |  9?(/t(/s(x))) dt =  (C<p)o/«.
0 0

An immediate consequence is.
COROLLARY 3.2: If tpeD(C) satisfies a Schroder equation

(3.4) cp{_f(x)) =  S9?(x), for an s >  0,

then C(p satisfies the same equation.
Another observation concerning the Schroder equation is the follo

wing.
THEOREM 3.3. Let ipeD(C),  then the following two statements are 

equivalent:
(a) 99  is eigenfunction of C.
(b) For every t >  0 there exists a such that

99(f(x)) =  ).tcp(x).
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P r o o f ,  (a) =*> (b) : Let 93 e  D(C) and Ctp =  0) then AC<p =
=  fiAq), but AC = I in D(C), so <p = fiAtp — g<p' in  [a, b) (see Theorem 1.1). 
This differential equation has exactly one-parameter family of solutions:

1 x<p(x) = к exp — Г1 /д (и )  d и .
LI JM u

One finds (cf. (0.1) and (0.2)) <p(x) — k  exp — h - 1(x). From (0.1) we have

h~1(f(x)) = t + h~1(x) t >  0, x  e  [a, b)). From this it is easily verifiable that 
<p satisfies (b).

(b) => (a). From the definition, Xt is determined uniquely. For all 
t, s >  0  we have <p{ft+s(x)) = Xs+t <p{pc), moreover from (b) follows

<p(ft+s{x)) =  =  At p(f* (x)) = Xtl sy(x).

Thus At+S =  XtXs (t , s >  0).
The continuity of t —>-Xt now follows from Theorem 0.1 and from 

the continuity of cp. Therefore (cf. [1 ] p. 38) since Xt ^  0  (****), Xt — y \  
for some fixed y >  0. So cp{ft{x)) =  J'V(X). t > 0 ,  i e [ « , b ) .  Now Cep —

OO CO

~  J  <P(SKx)) d£ =  J  Yl<p(x) dt. Thus C(p =  pq? and (a) is satisfied with ju ~  
0 0
OO

=  J  /  dt. Since <p is continuous in b, the inequality 0  <  y <C 1 must be 
0

satisfied, thus the integral defining ju exists.
In closing we remark: it follows from our above considerations that 

the spectrum of C is the interval (—0 0 , 0).

(***») Xt =  0 w ould im ply <p =  0 (cf. (b) in  T heorem  3.3), b u t th is  is impossible.
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