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GLEASON–KAHANE–ŻELAZKO THEOREM
FOR BILINEAR MAPS

Abbas Zivari-Kazempour

Abstract. Let A and B be two unital Banach algebras and A = A × B. We
prove that the bilinear mapping ϕ : A→ C is a bi-Jordan homomorphism if and
only if ϕ is unital, invertibility preserving and jointly continuous. Additionally,
if A is commutative, then ϕ is a bi-homomorphism.

1. Introduction and preliminaries

Throughout the paper, let A and B be two unital Banach algebras, over
the complex field C, with unit elements e1 and e2, respectively.

A linear map f : A → B is called unital if f(e1) = e2 and it is said
to preserves invertibility if a ∈ Inv(A) implies that f(a) ∈ Inv(B), where
Inv(A) stands for the set of all invertible elements of A. In the case B = C,
the invertibility preserving property simply means that f(a) 6= 0 for every
a ∈ Inv(A).

A linear map f : A→ B is called Jordan homomorphism if

f(ab+ ba) = f(a)f(b) + f(b)f(a), a, b ∈ A,

or equivalently, f(a2) = f(a)2 for all a ∈ A.
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Clearly, each homomorphism is a Jordan homomorphism, but the converse
is not valid in general. For example, it is proved (see [3]) that some Jordan
homomorphism on the polynomial rings can not be homomorphism. Other
examples demonstrated by the author can be found in [14].

The following famous characterization of Jordan homomorphisms is due
to Żelazko [10] (see also [7]).

Theorem 1.1 ([10, Theorem 1]). Every Jordan homomorphism from Ba-
nach algebra A into a semisimple commutative Banach algebra B is a homo-
morphism.

Concerning characterization of Jordan homomorphisms and their auto-
matic continuity on Banach algebras, we refer the reader to [11, 12, 14] and
references therein.

Let A be a Banach algebra and f : A → C be a unital invertibility pre-
serving linear functional. When is f multiplicative?

One of the earliest results in this area is the following, which was obtained
independently by Gleason [2], Kahane and Żelazko [5], and now known as the
Gleason–Kahane–Żelazko theorem (see also [1]).

Theorem 1.2. Let A be a unital Banach algebra and f : A→ C be a unital
linear functional. If for every a ∈ A,

f(a) ∈ σ(a) = {λ ∈ C : λe1 − a /∈ Inv(A)},

or equivalently, f(a) 6= 0 for every a ∈ Inv(A), then f is multiplicative.

Remark 1.3. It should be pointed out that:
(i) Theorem 1.2 first was proved for commutative Banach algebra A, and

then Żelazko by proving Theorem 1.1 showed that the conclusion also
holds for non-commutative case.

(ii) It follows from the hypotheses of Theorem 1.2 that f is continuous.
Indeed, let a ∈ A with ‖a‖ < 1. Then e1 − a is invertible and hence
f(e1 − a) 6= 0. Therefore f(a) 6= 1 for all a ∈ A with ‖a‖ < 1. This
implies that f is continuous.

A generalization of Theorem 1.2 to real Banach algebra was proved in [6].
Subsequently several generalizations of this result were published by many
authors. See for example, the interesting articles by Jarosz [4] and Sourour [8].
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Throughout the paper, we assume that A = A × B. Then A becomes a
Banach algebra with the multiplication

(a, b)(x, y) = (ax, by), (a, b), (x, y) ∈ A×B,

and norm

‖(a, b)‖ := ‖a‖+ ‖b‖.

Let D be a complex Banach algebra and ϕ : A→ D be a bilinear map. Then ϕ
is called bounded if there is a real number M such that ‖ϕ(a, b)‖ 6M‖a‖‖b‖
for all (a, b) ∈ A.

Obviously, ϕ is bounded if and only if it is jointly continuous. A bilinear
map ϕ is called bi-homomorphism if for all (a, b), (x, y) ∈ A,

ϕ(ax, by) = ϕ(a, b)ϕ(x, y),

and it is called bi-Jordan homomorphism if

ϕ(a2, b2) = ϕ(a, b)2, (a, b) ∈ A.

Clearly, each bi-homomorphism is a bi-Jordan homomorphism, but the con-
verse is not true, in general. For example, take

A =

{[
a b
0 0

]
: a, b ∈ R

}
.

Let B be the algebra A with an identity matrix I adjoined. Define the bilinear
mapping ϕ : A → A by ϕ(x, y) = xy. Then ϕ is a bi-Jordan homomorphism,
while it is not a bi-homomorphism. Indeed, let

u =

[
a b
0 0

]
, v =

[
s t
0 0

]
, x =

[
c d
0 0

]
, and y = I.

Then (u, v), (x, y) ∈ A, but

ϕ(ux, vy) =

[
acs act
0 0

]
6=
[
asc asd
0 0

]
= ϕ(u, v)ϕ(x, y).

The aim of this paper is to investigate the Gleason–Kahane–Żelazko the-
orem for bilinear maps.
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2. Main results

We commence with the following lemma which proof is straightforward.

Lemma 2.1. Suppose that ϕ : A→ C is a bi-Jordan homomorphism. Then
for every (a, b), (x, y) ∈ A,
(1) ϕ(ax+ xa, b2) = 2ϕ(x, b)ϕ(a, b),
(2) ϕ(a2, by + yb) = 2ϕ(a, b)ϕ(a, y).

Lemma 2.2. Let ϕ : A → C be a bi-Jordan homomorphism. Then for all
(x, y) ∈ A,

ϕ(x, y) = ϕ(x, e2)ϕ(e1, y).

Proof. By our assumpion

(2.1) ϕ(x2, y2) = ϕ(x, y)2, (x, y) ∈ A.

Replacing x by x+ e1 and y by y + e2 in (2.1), we get

(2.2) ϕ(x2 + 2x+ e1, y
2 + 2y + e2) = ϕ(x+ e1, y + e2)2.

By applying Lemma 2.1(1) for a = e1 and (2) for b = e2, respectively, we
obtain

(2.3) ϕ(2x, y2) = 2ϕ(x, y)ϕ(e1, y), and ϕ(x2, 2y) = 2ϕ(x, e2)ϕ(x, y).

It follows from (2.1), (2.2) and (2.3) that

ϕ(x, y) = ϕ(x, e2)ϕ(e1, y),

for all (x, y) ∈ A, as required. �

We mention that when studying invertibility preserving bilinear maps be-
tween unital Banach algebras, there is no loss of generality in assuming that
the map is unital. Indeed, if ϕ : A → C preserves invertibility, then ϕ(e1, e2)
is invertible in C and we can instead work with the bilinear map ψ : A → C,
defined by ψ(x, y) = ϕ(e1, e2)−1ϕ(x, y), for all (x, y) ∈ A. Then ψ is unital
and preserves invertibility.

Theorem 2.3. Let ϕ be a bilinear map from A into C. If ϕ preserves
invertibility, then ϕ is continuous at (x, e2) and (e1, y).
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Proof. Without loss of generality let ϕ(e1, e2) = 1. Suppose that (x, e2) ∈
A with ‖x‖ < 1. Then (e1 − x, e2) ∈ Inv(A). Since ϕ preserves invertibil-
ity, ϕ(e1 − x, e2) 6= 0 and hence we get ϕ(x, e2) 6= ϕ(e1, e2) = 1. Therefore
ϕ(x, e2) 6= 1 for all (x, e2) ∈ A with ‖x‖ < 1. Let |ϕ(x, e2)| > 1, and take

a =
x

ϕ(x, e2)
.

Then ‖a‖ < 1 and ϕ(a, e2) = 1, which is a contradiction. Consequently,
|ϕ(x, e2)| 6 1, for all (x, e2) ∈ A with ‖x‖ < 1. If we replace x by x

2‖x‖ ,
then we obtain |ϕ(x, e2)| 6 2‖x‖ for all (x, e2) ∈ A. Thus, ϕ is continuous at
(x, e2). Similarly, ϕ is continuous at (e1, y). �

As a consequence of Theorem 2.3, we get the next corollary.

Corollary 2.4. Suppose that ϕ : A → C is a bi-Jordan homomorphism.
If ϕ preserves invertibility, then ϕ is jointly continuous.

Proof. By Theorem 2.3, for all (x, e2), (e1, y) ∈ A,

|ϕ(x, e2)| 6 2‖x‖ and |ϕ(e1, y)| 6 2‖y‖.

Now it follows from Lemma 2.2 that

|ϕ(x, y)| = |ϕ(x, e2)ϕ(e1, y)| 6 |ϕ(x, e2)||ϕ(e1, y)| 6 4‖x‖‖y‖,

for all (x, y) ∈ A. Thus, ϕ is bounded and so it is jointly continuous. �

We may formulate now our main result.

Theorem 2.5. Let ϕ : A → C be a bilinear map. Then ϕ is a bi-Jordan
homomorphism if and only if the following conditions hold:
(i) ϕ(e1, e2) = 1,
(ii) ϕ is jointly continuous,
(iii) ϕ preserves invertibility.

Proof. First suppose that ϕ is a bi-Jordan homomorphism. Then clearly,
ϕ(e1, e2) = 1. Let (x, y) ∈ Inv(A). By Lemma 2.1,

2ϕ(xx−1, e2) = ϕ(xx−1 + x−1x, e2) = 2ϕ(x, e2)ϕ(x−1, e2),

and

2ϕ(e1, yy
−1) = ϕ(e1, yy

−1 + y−1y) = 2ϕ(e1, y)ϕ(e1, y
−1).
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Thus, from Lemma 2.2 we get

1 = ϕ(e1, e2)

= ϕ(xx−1, yy−1)

= ϕ(xx−1, e2)ϕ(e1, yy
−1)

= [ϕ(x, e2)ϕ(x−1, e2)][ϕ(e1, y)ϕ(e1, y
−1)]

= [ϕ(x, e2)ϕ(e1, y)][ϕ(x−1, e2)ϕ(e1, y
−1)]

= ϕ(x, y)ϕ(x−1, y−1).

Consequently, ϕ(x, y)−1 = ϕ(x−1, y−1), for all (x, y) ∈ Inv(A) and therefore ϕ
preserves invertibility. Now the joint continuity of ϕ follows from Corollary 2.4.

For the converse let conditions (i), (ii) and (iii) hold. Let (x, y) ∈ A be
fixed and define Γ: C→ C by

Γ(z) = ϕ(ezx, ezy).

Then Γ is an entire function and Γ(z) 6= 0 for all z ∈ C, because (ezx, ezy) ∈
Inv(A). So, there exists entire function f such that Γ(z) = ef(z) for all z ∈ C.
Thus by Hadamard’s factorization theorem ([9, p. 250]) there exist α, β ∈ C
such that f(z) = αz + β. Since

1 = ϕ(e1, e2) = Γ(0) = eβ,

we have β = 0. Therefore

ϕ(ezx, ezy) = Γ(z) = ef(z) = eαz,

and hence

(2.4) ϕ
(
e1 +

∞∑
n=1

znxn

n!
, e2 +

∞∑
n=1

znyn

n!

)
= ϕ(ezx, ezy) = eαz = 1 +

∞∑
n=1

znαn

n!
.

By taking x = 0 in (2.4) and comparing coefficients, we get

(2.5) ϕ(e1, y)n = αn = ϕ(e1, y
n),

for all n ∈ N. Similarly,

(2.6) ϕ(x, e2)n = αn = ϕ(xn, e2).
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Comparing coefficients z, z2 and z4 in (2.4), respectively, we obtain
(P) ϕ(e1, y) + ϕ(x, e2) = α,
(Q) ϕ(e1, y

2) + 2ϕ(x, y) + ϕ(x2, e2) = α2,
(R) ϕ(x4, e2) + ϕ(e1, y

4) + 4ϕ(x, y3) + 6ϕ(x2, y2) + 4ϕ(x3, y) = α4.
It follows from (P) and (Q) that

ϕ(e1, y
2) + 2ϕ(x, y) + ϕ(x2, e2) = α2

= ϕ(e1, y)2 + ϕ(x, e2)2 + 2ϕ(e1, y)ϕ(x, e2),

and hence by (2.5), (2.6) we arrive at

(2.7) ϕ(x, y) = ϕ(x, e2)ϕ(e1, y),

for all (x, y) ∈ A. By (2.5) and (2.7), we have

4ϕ(x, y3) = 4ϕ(x, e2)ϕ(e1, y
3)(2.8)

= 4ϕ(x, e2)ϕ(e1, y)ϕ(e1, y
2)

= 4ϕ(x, y)ϕ(e1, y
2).

Similarly, (2.6) and (2.7), give

(2.9) 4ϕ(x3, y) = 4ϕ(x, y)ϕ(x2, e2).

By applying equations (Q), (R) and equalities (2.8), (2.9) we get

(2.10) 4ϕ(x, y)2 + 2ϕ(x2, e2)ϕ(e1, y
2) = 6ϕ(x2, y2).

It follows from (2.7) and (2.10) that ϕ(x2, y2) = ϕ(x, y)2 for all (x, y) ∈ A.
This completes the proof. �

From Theorem 2.5 and [13, Theorem 2.1], we get the next result.

Corollary 2.6. Let ϕ : A→ C be a bilinear map such that the conditions
(i), (ii) and (iii) of Theorem 2.5 hold. If A is commutative, then ϕ is a bi-
homomorphism.

Let ϕ : A → C be a bilinear map. We say that A is commutative with
respect to ϕ or ϕ-commutative if for all (a, b), (x, y) ∈ A,

ϕ(ax, y) = ϕ(xa, y), and ϕ(x, by) = ϕ(x, yb).

Clearly, if A is commutative, then it is ϕ-commutative. The converse is false
in general. The following example illustrates this fact.
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Example 2.7. Let

A =

{([
z1 z2
0 0

]
,

[
w1 w2

0 0

])
: z1, z2, w1, w2 ∈ C

}
,

and define ϕ : A→ C by ϕ(x, y) = z1w1, where

x =

[
z1 z2
0 0

]
, y =

[
w1 w2

0 0

]
.

Then it is easy to check that A is ϕ-commutative, but neither A is unital nor
commutative.

The following theorem characterizes bi-Jordan homomorphism.

Theorem 2.8. Every bi-Jordan homomorphism ϕ from ϕ-commutative
Banach algebra A into a semisimple commutative Banach algebra D is a bi-
homomorphism.

Proof. We first assume that D = C and let ϕ : A → C be a bi-Jordan
homomorphism. By Lemma 2.2, for all (x, y) ∈ A, ϕ(x, y) = ϕ(x, e2)ϕ(e1, y).
Replacing x by ax and y by by, we get

(2.11) ϕ(ax, by) = ϕ(ax, e2)ϕ(e1, by),

for all (a, b), (x, y) ∈ A. By Lemma 2.1 and ϕ-commutativity of A we have

(2.12) ϕ(ax, e2) = ϕ(x, e2)ϕ(a, e2) and ϕ(e1, by) = ϕ(e1, y)ϕ(e1, b).

Hence, by (2.11) and (2.12),

ϕ(ax, by) = ϕ(ax, e2)ϕ(e1, by)

= [ϕ(x, e2)ϕ(a, e2)][ϕ(e1, y)ϕ(e1, b)]

= [ϕ(a, e2)ϕ(e1, b)][ϕ(x, e2)ϕ(e1, y)]

= ϕ(a, b)ϕ(x, y).

Thus, ϕ(ax, by) = ϕ(a, b)ϕ(x, y), for all (a, b), (x, y) ∈ A.
Now suppose that D is semisimple and commutative. Let M(D) be the

maximal ideal space of D. We associate with each f ∈ M(D) a function
ϕf : A→ C defined by

ϕf (a, b) := f(ϕ(a, b)), (a, b) ∈ A.
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Pick f ∈ M(D) arbitrary. Then ϕf is a bi-Jordan homomorphism, therefore
by the above argument it is a bi-homomorphism. From definition of ϕf we
have

f(ϕ(ax, by)) = f(ϕ(a, b))f(ϕ(x, y)) = f(ϕ(a, b)ϕ(x, y)).

Since f ∈M(D) was arbitrary and D is assumed to be semisimple,

ϕ(ax, by) = ϕ(a, b)ϕ(x, y),

for all (a, b), (x, y) ∈ A. �

The following result is a consequence of Theorem 2.5 and Theorem 2.8.

Corollary 2.9. Let ϕ : A→ C be a bilinear map such that the conditions
(i), (ii) and (iii) of Theorem 2.5 hold. If A is ϕ-commutative, then ϕ is a
bi-homomorphism.

Next we generalize Theorem 2.8 for non semisimple Banach algebra D.

Theorem 2.10. Every bi-Jordan homomorphism ϕ from ϕ-commutative
Banach algebra A into a commutative Banach algebra D is a bi-homomorphism.

Proof. Let ϕ : A→ D be a bi-Jordan homomorphism. Then ϕ(a2, b2) =
ϕ(a, b)2 for all (a, b) ∈ A. Replacing a by a+ x and b by b+ y, we get

(2.13) ϕ(ax+ xa, by + yb) = 2ϕ(a, b)ϕ(x, y) + 2ϕ(a, y)ϕ(x, b),

for all (a, b), (x, y) ∈ A. It follows from (2.13) and ϕ-commutativity of A that

4ϕ(ax, by) = ϕ(ax+ xa, by + yb)

= 2ϕ(a, b)ϕ(x, y) + 2ϕ(a, y)ϕ(x, b).

Hence,

(2.14) 2ϕ(ax, by) = ϕ(a, b)ϕ(x, y) + ϕ(a, y)ϕ(x, b),

for all (a, b), (x, y) ∈ A. By Lemma 2.2,

ϕ(a, b)ϕ(x, y) = [ϕ(a, e2)ϕ(e1, b)][ϕ(x, e2)ϕ(e1, y)] = ϕ(a, y)ϕ(x, b).

Consequently, from (2.14) we deduce that ϕ is a bi-homomorphism. �
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