GLEASON-KAHANE-ŻELAZKO THEOREM FOR BILINEAR MAPS

Abbas Zivari-Kazempour (D)

Abstract

Let A and B be two unital Banach algebras and $\mathfrak{A}=A \times B$. We prove that the bilinear mapping $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ is a bi-Jordan homomorphism if and only if φ is unital, invertibility preserving and jointly continuous. Additionally, if \mathfrak{A} is commutative, then φ is a bi-homomorphism.

1. Introduction and preliminaries

Throughout the paper, let A and B be two unital Banach algebras, over the complex field \mathbb{C}, with unit elements e_{1} and e_{2}, respectively.

A linear map $f: A \rightarrow B$ is called unital if $f\left(e_{1}\right)=e_{2}$ and it is said to preserves invertibility if $a \in \operatorname{Inv}(A)$ implies that $f(a) \in \operatorname{Inv}(B)$, where $\operatorname{Inv}(A)$ stands for the set of all invertible elements of A. In the case $B=\mathbb{C}$, the invertibility preserving property simply means that $f(a) \neq 0$ for every $a \in \operatorname{Inv}(A)$.

A linear map $f: A \rightarrow B$ is called Jordan homomorphism if

$$
f(a b+b a)=f(a) f(b)+f(b) f(a), \quad a, b \in A
$$

or equivalently, $f\left(a^{2}\right)=f(a)^{2}$ for all $a \in A$.

[^0]Clearly, each homomorphism is a Jordan homomorphism, but the converse is not valid in general. For example, it is proved (see [3]) that some Jordan homomorphism on the polynomial rings can not be homomorphism. Other examples demonstrated by the author can be found in [14.

The following famous characterization of Jordan homomorphisms is due to Żelazko [10] (see also [7]).

Theorem 1.1 ([10, Theorem 1]). Every Jordan homomorphism from Banach algebra A into a semisimple commutative Banach algebra B is a homomorphism.

Concerning characterization of Jordan homomorphisms and their automatic continuity on Banach algebras, we refer the reader to [11, 12, 14] and references therein.

Let A be a Banach algebra and $f: A \rightarrow \mathbb{C}$ be a unital invertibility preserving linear functional. When is f multiplicative?

One of the earliest results in this area is the following, which was obtained independently by Gleason [2], Kahane and Żelazko [5], and now known as the Gleason-Kahane-Żelazko theorem (see also [1]).

Theorem 1.2. Let A be a unital Banach algebra and $f: A \rightarrow \mathbb{C}$ be a unital linear functional. If for every $a \in A$,

$$
f(a) \in \sigma(a)=\left\{\lambda \in \mathbb{C}: \lambda e_{1}-a \notin \operatorname{Inv}(A)\right\}
$$

or equivalently, $f(a) \neq 0$ for every $a \in \operatorname{Inv}(A)$, then f is multiplicative.
Remark 1.3. It should be pointed out that:
(i) Theorem 1.2 first was proved for commutative Banach algebra A, and then Żelazko by proving Theorem 1.1 showed that the conclusion also holds for non-commutative case.
(ii) It follows from the hypotheses of Theorem 1.2 that f is continuous. Indeed, let $a \in A$ with $\|a\|<1$. Then $e_{1}-a$ is invertible and hence $f\left(e_{1}-a\right) \neq 0$. Therefore $f(a) \neq 1$ for all $a \in A$ with $\|a\|<1$. This implies that f is continuous.

A generalization of Theorem 1.2 to real Banach algebra was proved in [6]. Subsequently several generalizations of this result were published by many authors. See for example, the interesting articles by Jarosz [4] and Sourour [8].

Throughout the paper, we assume that $\mathfrak{A}=A \times B$. Then \mathfrak{A} becomes a Banach algebra with the multiplication

$$
(a, b)(x, y)=(a x, b y), \quad(a, b),(x, y) \in A \times B
$$

and norm

$$
\|(a, b)\|:=\|a\|+\|b\| .
$$

Let D be a complex Banach algebra and $\varphi: \mathfrak{A} \rightarrow D$ be a bilinear map. Then φ is called bounded if there is a real number M such that $\|\varphi(a, b)\| \leqslant M\|a\|\|b\|$ for all $(a, b) \in \mathfrak{A}$.

Obviously, φ is bounded if and only if it is jointly continuous. A bilinear map φ is called bi-homomorphism if for all $(a, b),(x, y) \in \mathfrak{A}$,

$$
\varphi(a x, b y)=\varphi(a, b) \varphi(x, y)
$$

and it is called bi-Jordan homomorphism if

$$
\varphi\left(a^{2}, b^{2}\right)=\varphi(a, b)^{2}, \quad(a, b) \in \mathfrak{A}
$$

Clearly, each bi-homomorphism is a bi-Jordan homomorphism, but the converse is not true, in general. For example, take

$$
A=\left\{\left[\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

Let B be the algebra A with an identity matrix I adjoined. Define the bilinear mapping $\varphi: \mathfrak{A} \rightarrow A$ by $\varphi(x, y)=x y$. Then φ is a bi-Jordan homomorphism, while it is not a bi-homomorphism. Indeed, let

$$
u=\left[\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right], \quad v=\left[\begin{array}{cc}
s & t \\
0 & 0
\end{array}\right], \quad x=\left[\begin{array}{cc}
c & d \\
0 & 0
\end{array}\right], \quad \text { and } \quad y=I
$$

Then $(u, v),(x, y) \in \mathfrak{A}$, but

$$
\varphi(u x, v y)=\left[\begin{array}{cc}
a c s & a c t \\
0 & 0
\end{array}\right] \neq\left[\begin{array}{cc}
a s c & a s d \\
0 & 0
\end{array}\right]=\varphi(u, v) \varphi(x, y)
$$

The aim of this paper is to investigate the Gleason-Kahane-Żelazko theorem for bilinear maps.

2. Main results

We commence with the following lemma which proof is straightforward.
Lemma 2.1. Suppose that $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ is a bi-Jordan homomorphism. Then for every $(a, b),(x, y) \in \mathfrak{A}$,
(1) $\varphi\left(a x+x a, b^{2}\right)=2 \varphi(x, b) \varphi(a, b)$,
(2) $\varphi\left(a^{2}, b y+y b\right)=2 \varphi(a, b) \varphi(a, y)$.

Lemma 2.2. Let $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ be a bi-Jordan homomorphism. Then for all $(x, y) \in \mathfrak{A}$,

$$
\varphi(x, y)=\varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right)
$$

Proof. By our assumpion

$$
\begin{equation*}
\varphi\left(x^{2}, y^{2}\right)=\varphi(x, y)^{2}, \quad(x, y) \in \mathfrak{A} \tag{2.1}
\end{equation*}
$$

Replacing x by $x+e_{1}$ and y by $y+e_{2}$ in (2.1), we get

$$
\begin{equation*}
\varphi\left(x^{2}+2 x+e_{1}, y^{2}+2 y+e_{2}\right)=\varphi\left(x+e_{1}, y+e_{2}\right)^{2} \tag{2.2}
\end{equation*}
$$

By applying Lemma 2.1(1) for $a=e_{1}$ and (2) for $b=e_{2}$, respectively, we obtain

$$
\begin{equation*}
\varphi\left(2 x, y^{2}\right)=2 \varphi(x, y) \varphi\left(e_{1}, y\right), \quad \text { and } \quad \varphi\left(x^{2}, 2 y\right)=2 \varphi\left(x, e_{2}\right) \varphi(x, y) \tag{2.3}
\end{equation*}
$$

It follows from (2.1), 2.2) and (2.3) that

$$
\varphi(x, y)=\varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right)
$$

for all $(x, y) \in \mathfrak{A}$, as required.
We mention that when studying invertibility preserving bilinear maps between unital Banach algebras, there is no loss of generality in assuming that the map is unital. Indeed, if $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ preserves invertibility, then $\varphi\left(e_{1}, e_{2}\right)$ is invertible in \mathbb{C} and we can instead work with the bilinear map $\psi: \mathfrak{A} \rightarrow \mathbb{C}$, defined by $\psi(x, y)=\varphi\left(e_{1}, e_{2}\right)^{-1} \varphi(x, y)$, for all $(x, y) \in \mathfrak{A}$. Then ψ is unital and preserves invertibility.

Theorem 2.3. Let φ be a bilinear map from \mathfrak{A} into \mathbb{C}. If φ preserves invertibility, then φ is continuous at $\left(x, e_{2}\right)$ and $\left(e_{1}, y\right)$.

Proof. Without loss of generality let $\varphi\left(e_{1}, e_{2}\right)=1$. Suppose that $\left(x, e_{2}\right) \in$ \mathfrak{A} with $\|x\|<1$. Then $\left(e_{1}-x, e_{2}\right) \in \operatorname{Inv}(\mathfrak{A})$. Since φ preserves invertibility, $\varphi\left(e_{1}-x, e_{2}\right) \neq 0$ and hence we get $\varphi\left(x, e_{2}\right) \neq \varphi\left(e_{1}, e_{2}\right)=1$. Therefore $\varphi\left(x, e_{2}\right) \neq 1$ for all $\left(x, e_{2}\right) \in \mathfrak{A}$ with $\|x\|<1$. Let $\left|\varphi\left(x, e_{2}\right)\right|>1$, and take

$$
a=\frac{x}{\varphi\left(x, e_{2}\right)}
$$

Then $\|a\|<1$ and $\varphi\left(a, e_{2}\right)=1$, which is a contradiction. Consequently, $\left|\varphi\left(x, e_{2}\right)\right| \leqslant 1$, for all $\left(x, e_{2}\right) \in \mathfrak{A}$ with $\|x\|<1$. If we replace x by $\frac{x}{2\|x\|}$, then we obtain $\left|\varphi\left(x, e_{2}\right)\right| \leqslant 2\|x\|$ for all $\left(x, e_{2}\right) \in \mathfrak{A}$. Thus, φ is continuous at $\left(x, e_{2}\right)$. Similarly, φ is continuous at $\left(e_{1}, y\right)$.

As a consequence of Theorem 2.3, we get the next corollary.
Corollary 2.4. Suppose that $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ is a bi-Jordan homomorphism. If φ preserves invertibility, then φ is jointly continuous.

Proof. By Theorem 2.3, for all $\left(x, e_{2}\right),\left(e_{1}, y\right) \in \mathfrak{A}$,

$$
\left|\varphi\left(x, e_{2}\right)\right| \leqslant 2\|x\| \quad \text { and } \quad\left|\varphi\left(e_{1}, y\right)\right| \leqslant 2\|y\| .
$$

Now it follows from Lemma 2.2 that

$$
|\varphi(x, y)|=\left|\varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right)\right| \leqslant\left|\varphi\left(x, e_{2}\right)\left\|\varphi\left(e_{1}, y\right) \mid \leqslant 4\right\| x\| \| y \|\right.
$$

for all $(x, y) \in \mathfrak{A}$. Thus, φ is bounded and so it is jointly continuous.
We may formulate now our main result.
Theorem 2.5. Let $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ be a bilinear map. Then φ is a bi-Jordan homomorphism if and only if the following conditions hold:
(i) $\varphi\left(e_{1}, e_{2}\right)=1$,
(ii) φ is jointly continuous,
(iii) φ preserves invertibility.

Proof. First suppose that φ is a bi-Jordan homomorphism. Then clearly, $\varphi\left(e_{1}, e_{2}\right)=1$. Let $(x, y) \in \operatorname{Inv}(\mathfrak{A})$. By Lemma 2.1.

$$
2 \varphi\left(x x^{-1}, e_{2}\right)=\varphi\left(x x^{-1}+x^{-1} x, e_{2}\right)=2 \varphi\left(x, e_{2}\right) \varphi\left(x^{-1}, e_{2}\right)
$$

and

$$
2 \varphi\left(e_{1}, y y^{-1}\right)=\varphi\left(e_{1}, y y^{-1}+y^{-1} y\right)=2 \varphi\left(e_{1}, y\right) \varphi\left(e_{1}, y^{-1}\right)
$$

Thus, from Lemma 2.2 we get

$$
\begin{aligned}
1 & =\varphi\left(e_{1}, e_{2}\right) \\
& =\varphi\left(x x^{-1}, y y^{-1}\right) \\
& =\varphi\left(x x^{-1}, e_{2}\right) \varphi\left(e_{1}, y y^{-1}\right) \\
& =\left[\varphi\left(x, e_{2}\right) \varphi\left(x^{-1}, e_{2}\right)\right]\left[\varphi\left(e_{1}, y\right) \varphi\left(e_{1}, y^{-1}\right)\right] \\
& =\left[\varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right)\right]\left[\varphi\left(x^{-1}, e_{2}\right) \varphi\left(e_{1}, y^{-1}\right)\right] \\
& =\varphi(x, y) \varphi\left(x^{-1}, y^{-1}\right)
\end{aligned}
$$

Consequently, $\varphi(x, y)^{-1}=\varphi\left(x^{-1}, y^{-1}\right)$, for all $(x, y) \in \operatorname{Inv}(\mathfrak{A})$ and therefore φ preserves invertibility. Now the joint continuity of φ follows from Corollary 2.4 .

For the converse let conditions (i), (ii) and (iii) hold. Let $(x, y) \in \mathfrak{A}$ be fixed and define $\Gamma: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
\Gamma(z)=\varphi\left(e^{z x}, e^{z y}\right)
$$

Then Γ is an entire function and $\Gamma(z) \neq 0$ for all $z \in \mathbb{C}$, because $\left(e^{z x}, e^{z y}\right) \in$ $\operatorname{Inv}(\mathfrak{A})$. So, there exists entire function f such that $\Gamma(z)=e^{f(z)}$ for all $z \in \mathbb{C}$. Thus by Hadamard's factorization theorem ([9, p. 250]) there exist $\alpha, \beta \in \mathbb{C}$ such that $f(z)=\alpha z+\beta$. Since

$$
1=\varphi\left(e_{1}, e_{2}\right)=\Gamma(0)=e^{\beta}
$$

we have $\beta=0$. Therefore

$$
\varphi\left(e^{z x}, e^{z y}\right)=\Gamma(z)=e^{f(z)}=e^{\alpha z}
$$

and hence

$$
\begin{equation*}
\varphi\left(e_{1}+\sum_{n=1}^{\infty} \frac{z^{n} x^{n}}{n!}, e_{2}+\sum_{n=1}^{\infty} \frac{z^{n} y^{n}}{n!}\right)=\varphi\left(e^{z x}, e^{z y}\right)=e^{\alpha z}=1+\sum_{n=1}^{\infty} \frac{z^{n} \alpha^{n}}{n!} \tag{2.4}
\end{equation*}
$$

By taking $x=0$ in 2.4 and comparing coefficients, we get

$$
\begin{equation*}
\varphi\left(e_{1}, y\right)^{n}=\alpha^{n}=\varphi\left(e_{1}, y^{n}\right) \tag{2.5}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Similarly,

$$
\begin{equation*}
\varphi\left(x, e_{2}\right)^{n}=\alpha^{n}=\varphi\left(x^{n}, e_{2}\right) \tag{2.6}
\end{equation*}
$$

Comparing coefficients z, z^{2} and z^{4} in (2.4), respectively, we obtain
(P) $\varphi\left(e_{1}, y\right)+\varphi\left(x, e_{2}\right)=\alpha$,
(Q) $\varphi\left(e_{1}, y^{2}\right)+2 \varphi(x, y)+\varphi\left(x^{2}, e_{2}\right)=\alpha^{2}$,
(R) $\varphi\left(x^{4}, e_{2}\right)+\varphi\left(e_{1}, y^{4}\right)+4 \varphi\left(x, y^{3}\right)+6 \varphi\left(x^{2}, y^{2}\right)+4 \varphi\left(x^{3}, y\right)=\alpha^{4}$.

It follows from (P) and (Q) that

$$
\begin{aligned}
\varphi\left(e_{1}, y^{2}\right)+2 \varphi(x, y)+\varphi\left(x^{2}, e_{2}\right) & =\alpha^{2} \\
& =\varphi\left(e_{1}, y\right)^{2}+\varphi\left(x, e_{2}\right)^{2}+2 \varphi\left(e_{1}, y\right) \varphi\left(x, e_{2}\right)
\end{aligned}
$$

and hence by 2.5, 2.6 we arrive at

$$
\begin{equation*}
\varphi(x, y)=\varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right) \tag{2.7}
\end{equation*}
$$

for all $(x, y) \in \mathfrak{A}$. By 2.5 and 2.7 , we have

$$
\begin{align*}
4 \varphi\left(x, y^{3}\right) & =4 \varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y^{3}\right) \tag{2.8}\\
& =4 \varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right) \varphi\left(e_{1}, y^{2}\right) \\
& =4 \varphi(x, y) \varphi\left(e_{1}, y^{2}\right)
\end{align*}
$$

Similarly, (2.6) and (2.7), give

$$
\begin{equation*}
4 \varphi\left(x^{3}, y\right)=4 \varphi(x, y) \varphi\left(x^{2}, e_{2}\right) \tag{2.9}
\end{equation*}
$$

By applying equations (Q), (R) and equalities (2.8), 2.9) we get

$$
\begin{equation*}
4 \varphi(x, y)^{2}+2 \varphi\left(x^{2}, e_{2}\right) \varphi\left(e_{1}, y^{2}\right)=6 \varphi\left(x^{2}, y^{2}\right) \tag{2.10}
\end{equation*}
$$

It follows from 2.7 and 2.10 that $\varphi\left(x^{2}, y^{2}\right)=\varphi(x, y)^{2}$ for all $(x, y) \in \mathfrak{A}$. This completes the proof.

From Theorem 2.5 and [13, Theorem 2.1], we get the next result.
Corollary 2.6. Let $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ be a bilinear map such that the conditions (i), (ii) and (iii) of Theorem 2.5 hold. If \mathfrak{A} is commutative, then φ is a bihomomorphism.

Let $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ be a bilinear map. We say that \mathfrak{A} is commutative with respect to φ or φ-commutative if for all $(a, b),(x, y) \in \mathfrak{A}$,

$$
\varphi(a x, y)=\varphi(x a, y), \quad \text { and } \quad \varphi(x, b y)=\varphi(x, y b)
$$

Clearly, if \mathfrak{A} is commutative, then it is φ-commutative. The converse is false in general. The following example illustrates this fact.

Example 2.7. Let

$$
\mathfrak{A}=\left\{\left(\left[\begin{array}{cc}
z_{1} & z_{2} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
w_{1} & w_{2} \\
0 & 0
\end{array}\right]\right): z_{1}, z_{2}, w_{1}, w_{2} \in \mathbb{C}\right\}
$$

and define $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ by $\varphi(x, y)=z_{1} w_{1}$, where

$$
x=\left[\begin{array}{cc}
z_{1} & z_{2} \\
0 & 0
\end{array}\right], \quad y=\left[\begin{array}{cc}
w_{1} & w_{2} \\
0 & 0
\end{array}\right] .
$$

Then it is easy to check that \mathfrak{A} is φ-commutative, but neither \mathfrak{A} is unital nor commutative.

The following theorem characterizes bi-Jordan homomorphism.
ThEOREM 2.8. Every bi-Jordan homomorphism φ from φ-commutative Banach algebra \mathfrak{A} into a semisimple commutative Banach algebra D is a bihomomorphism.

Proof. We first assume that $D=\mathbb{C}$ and let $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ be a bi-Jordan homomorphism. By Lemma 2.2, for all $(x, y) \in \mathfrak{A}, \varphi(x, y)=\varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right)$. Replacing x by $a x$ and y by by, we get

$$
\begin{equation*}
\varphi(a x, b y)=\varphi\left(a x, e_{2}\right) \varphi\left(e_{1}, b y\right) \tag{2.11}
\end{equation*}
$$

for all $(a, b),(x, y) \in \mathfrak{A}$. By Lemma 2.1 and φ-commutativity of \mathfrak{A} we have

$$
\begin{equation*}
\varphi\left(a x, e_{2}\right)=\varphi\left(x, e_{2}\right) \varphi\left(a, e_{2}\right) \quad \text { and } \quad \varphi\left(e_{1}, b y\right)=\varphi\left(e_{1}, y\right) \varphi\left(e_{1}, b\right) \tag{2.12}
\end{equation*}
$$

Hence, by 2.11) and 2.12,

$$
\begin{aligned}
\varphi(a x, b y) & =\varphi\left(a x, e_{2}\right) \varphi\left(e_{1}, b y\right) \\
& =\left[\varphi\left(x, e_{2}\right) \varphi\left(a, e_{2}\right)\right]\left[\varphi\left(e_{1}, y\right) \varphi\left(e_{1}, b\right)\right] \\
& =\left[\varphi\left(a, e_{2}\right) \varphi\left(e_{1}, b\right)\right]\left[\varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right)\right] \\
& =\varphi(a, b) \varphi(x, y)
\end{aligned}
$$

Thus, $\varphi(a x, b y)=\varphi(a, b) \varphi(x, y)$, for all $(a, b),(x, y) \in \mathfrak{A}$.
Now suppose that D is semisimple and commutative. Let $\mathfrak{M}(D)$ be the maximal ideal space of D. We associate with each $f \in \mathfrak{M}(D)$ a function $\varphi_{f}: \mathfrak{A} \rightarrow \mathbb{C}$ defined by

$$
\varphi_{f}(a, b):=f(\varphi(a, b)), \quad(a, b) \in \mathfrak{A}
$$

Pick $f \in \mathfrak{M}(D)$ arbitrary. Then φ_{f} is a bi-Jordan homomorphism, therefore by the above argument it is a bi-homomorphism. From definition of φ_{f} we have

$$
f(\varphi(a x, b y))=f(\varphi(a, b)) f(\varphi(x, y))=f(\varphi(a, b) \varphi(x, y))
$$

Since $f \in \mathfrak{M}(D)$ was arbitrary and D is assumed to be semisimple,

$$
\varphi(a x, b y)=\varphi(a, b) \varphi(x, y)
$$

for all $(a, b),(x, y) \in \mathfrak{A}$.

The following result is a consequence of Theorem 2.5 and Theorem 2.8.

Corollary 2.9. Let $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ be a bilinear map such that the conditions (i), (ii) and (iii) of Theorem 2.5 hold. If \mathfrak{A} is φ-commutative, then φ is a bi-homomorphism.

Next we generalize Theorem 2.8 for non semisimple Banach algebra D.
ThEOREM 2.10. Every bi-Jordan homomorphism φ from φ-commutative Banach algebra \mathfrak{A} into a commutative Banach algebra D is a bi-homomorphism.

Proof. Let $\varphi: \mathfrak{A} \rightarrow D$ be a bi-Jordan homomorphism. Then $\varphi\left(a^{2}, b^{2}\right)=$ $\varphi(a, b)^{2}$ for all $(a, b) \in \mathfrak{A}$. Replacing a by $a+x$ and b by $b+y$, we get

$$
\begin{equation*}
\varphi(a x+x a, b y+y b)=2 \varphi(a, b) \varphi(x, y)+2 \varphi(a, y) \varphi(x, b) \tag{2.13}
\end{equation*}
$$

for all $(a, b),(x, y) \in \mathfrak{A}$. It follows from (2.13) and φ-commutativity of \mathfrak{A} that

$$
\begin{aligned}
4 \varphi(a x, b y) & =\varphi(a x+x a, b y+y b) \\
& =2 \varphi(a, b) \varphi(x, y)+2 \varphi(a, y) \varphi(x, b)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
2 \varphi(a x, b y)=\varphi(a, b) \varphi(x, y)+\varphi(a, y) \varphi(x, b) \tag{2.14}
\end{equation*}
$$

for all $(a, b),(x, y) \in \mathfrak{A}$. By Lemma 2.2 ,

$$
\varphi(a, b) \varphi(x, y)=\left[\varphi\left(a, e_{2}\right) \varphi\left(e_{1}, b\right)\right]\left[\varphi\left(x, e_{2}\right) \varphi\left(e_{1}, y\right)\right]=\varphi(a, y) \varphi(x, b)
$$

Consequently, from 2.14 we deduce that φ is a bi-homomorphism.

Acknowledgments. The author would like to thank the referees for proving valuable comments and helping in improving the content of this paper.

References

[1] F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
[2] A.M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172.
[3] N. Jacobson and C.E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), no. 3, 479-502.
[4] K. Jarosz, Generalizations of the Gleason-Kahane-Żelazko theorem, Rocky Mountain J. Math. 21 (1991), no. 3, 915-921.
[5] J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
[6] S.H. Kulkarni, Gleason-Kahane-Żelazko theorem for real Banach algebras, J. Math. Phys. Sci. 18 (1983/84), Special Issue, S19-S28.
[7] T. Miura, S.-E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 2005, no. 4, 435-441.
[8] A.R. Sourour, The Gleason-Kahane-Żelazko theorem and its generalizations, in: J. Zemánek (ed.), Functional Analysis and Operator Theory, Banach Center Publ., 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 327-331.
[9] E.C. Titchmarsh, The Theory of Functions, Reprint of the second (1939) edition, Oxford University Press, Oxford, 1976.
[10] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85.
[11] A. Zivari-Kazempour, A characterisation of 3-Jordan homomorphisms on Banach algebras, Bull. Aust. Math. Soc. 93 (2016), no. 2, 301-306.
[12] A. Zivari-Kazempour, Automatic continuity of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc. 33 (2018), no. 1, 165-170.
[13] A. Zivari-Kazempour, When is a bi-Jordan homomorphism bi-homomorphism?, Kragujevac J. Math. 42 (2018), no. 4, 485-493.
[14] A. Zivari-Kazempour, Characterization of n-Jordan homomorphisms and their automatic continuity on Banach algebras, Ann. Univ. Ferrara (2022). DOI: 10.1007/s11565-022-00425-6

Department of Mathematics
Ayatollah Borujerdi University
Borujerd
Iran
e-mail: zivari@abru.ac.ir, zivari6526@gmail.com

[^0]: Received: 09.09.2021. Accepted: 31.08.2022. Published online: 15.09.2022.
 (2020) Mathematics Subject Classification: 47B48, 46H99, 46H25.

 Key words and phrases: Gleason-Kahane-Żelazko theorem, preserves invertibility, bihomomorphism, bi-Jordan homomorphism.

