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ON A NEW GENERALIZATION
OF PELL HYBRID NUMBERS

Dorota Bród , Anetta Szynal-Liana, Iwona Włoch

Abstract. In this paper, we define and study a new one-parameter generaliza-
tion of the Pell hybrid numbers. Based on the definition of r-Pell numbers, we
define the r-Pell hybrid numbers. We give their properties: character, Binet
formula, summation formula, and generating function. Moreover, we present
Catalan, Cassini, d’Ocagne, and Vajda type identities for the r-Pell hybrid
numbers.

1. Introduction

Dual and hyperbolic numbers are two-dimensional number systems. Dual
numbers were introduced in 1873 byW. Clifford and they are of the form a+cε,
where a, c ∈ R and ε2 = 0. Hyperbolic numbers were introduced in 1848 by
J. Cockle as numbers of the form a + dh, where a, d ∈ R, h2 = 1 and h 6=
±1. Hybrid numbers introduced by M. Özdemir in 2018 are numbers created
with any combination of complex, hyperbolic and dual numbers satisfying the
relation ih = −hi = ε+ i, see [13].
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Let K be the set of hybrid numbers Z of the form Z = a + bi + cε + dh,
where a, b, c, d ∈ R and i, ε, h are operators such that

(1.1) i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε+ i.

If c = d = 0, then we obtain the definition of complex numbers, if b = d = 0,
then we have dual numbers, b = c = 0 gives hyperbolic numbers.

Let Z1 = a1+ b1i+ c1ε+d1h, Z2 = a2+ b2i+ c2ε+d2h be any two hybrid
numbers. Then

Z1 = Z2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2,

Z1 ± Z2 = (a1 ± a2) + (b1 ± b2)i+ (c1 ± c2)ε+ (d1 ± d2)h,

sZ1 = sa1 + sb1i+ sc1ε+ sd1h for s ∈ R.

The hybrid numbers multiplication is defined using (1.1). Table 1 presents
the products of units i, ε, and h.

Table 1. Multiplication rules
· i ε h

i −1 1− h ε+ i

ε h+ 1 0 −ε
h −ε− i ε 1

Using the rules given in Table 1, the multiplication of hybrid numbers
can be made analogously as the multiplication of algebraic expressions. Note
that the set of hybrid numbers is a non-commutative ring with respect to the
addition and multiplication operations. The conjugate of a hybrid number
Z = a+ bi+ cε+ dh is defined by Z = a− bi− cε− dh.

The real number

(1.2) C(Z) = ZZ = ZZ = a2 + (b− c)2 − c2 − d2 = a2 + b2 − 2bc− d2

is called the character of the hybrid number Z. The set of hybrid numbers
is isomorphic to split quaternions, see [15]. It is worth mentioning that split
quaternions have interesting applications in physics ([1]). For the basics of
hybrid number theory, see [13].

In [9], Horadam introduced a second-order linear recurrence sequence {Wn}
by the following relation

Wn =Wn(a, b; p, q) = pWn−1 − qWn−2 for n ≥ 2, W0 = a, W1 = b,
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where a, b, p, q are arbitrary integer numbers. This sequence is a certain
generalization of Fibonacci sequence Fn = Wn(0, 1; 1,−1), Lucas sequence
Ln =Wn(2, 1; 1,−1), Jacobsthal sequence Jn =Wn(0, 1; 1,−2), Pell sequence
Pn = Wn(0, 1; 2,−1), Pell–Lucas sequence Qn = Wn(2, 2; 2,−1), Mersenne
sequence Mn = Wn(0, 1; 3, 2). In the literature, all sequences defined by ho-
mogenous linear recurrence relations are called as Fibonacci type sequences,
consequently the above sequences also belong to the family of Fibonacci type
sequences. To study them, not only recurrence relations are used but also
direct formulas, known as Binet’s type formulas. If the sequence is given
by the second-order linear recurrence relations then it is easy to find Bi-
net’s type formula using, for example, the method of characteristic equa-
tions. The Binet’s type formula for the nth Pell number has the form Pn =
(1+
√
2)n−(1−

√
2)n

2
√
2

for n ≥ 0.

Fibonacci type sequences have found wide application in the theory of hy-
percomplex numbers, in particular in studying quaternions, octonions, sede-
nions, hybrid numbers, and hybrinomials. The survey [20] collects some results
obtained quite recently, see also their references. This paper relates to existing
results for hypercomplex numbers of the Fibonacci type.

The nth Horadam hybrid number Hn is defined as

Hn =Wn + iWn+1 + εWn+2 + hWn+3.

For special values of Wn, we obtain the definitions of the Fibonacci hybrid
numbers FHn, Jacobsthal hybrid numbers JHn, Pell hybrid numbers PHn,
k-Pell hybrid numbers HPk,n.

In the literature, many authors considered hybrid numbers and generalized
quaternions with coefficients being members of known sequences, for example
Fibonacci and Lucas sequences [17], Mersenne–Lucas sequence [14], Padovan
hybrid quaternions [25], generalized Tetranacci hybrid numbers [18]. Interest-
ing results of the Horadam hybrid numbers obtained recently can be found
in [19]. In [21], the Pell and Pell–Lucas hybrid numbers were investigated. It is
interesting that the hybrid numbers are investigated not only for the classical
Fibonacci, Pell, Jacobsthal numbers, but for their various generalizations. For
example, Cerda-Morales [7] studied generalized hybrid Fibonacci numbers and
their properties. Catarino [4] introduced and studied a new sequence of num-
bers, called k-Pell hybrid numbers, based on the k-Pell numbers. Catarino and
Bilgici defined a modified k-Pell hybrid sequence, see [6]. For other types of
hybrid number sequences see, for example [10, 22, 23]. The Pell hybrinomials,
i.e., polynomials, which are a generalization of Pell hybrid numbers, were in-
troduced and studied in [12]. Moreover, in [8], Mersenne and Mersenne–Lucas
hybrinomial quaternions were studied. In [24], the authors presented some
properties of split Pell and Pell–Lucas quaternions.
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In [4, 21] there were presented some algebraic properties of the presented
hybrid numbers, including Binet formula, generating functions, and some iden-
tities. Properties of generalized Fibonacci hybrid numbers are presented in [7].
The author provides information on other hyper-complex numbers related to
Fibonacci numbers and their applications.

Motivated by the above papers and their results, in this paper, we apply
a special generalization of Pell sequence to study the properties of special
subsets of hybrid numbers. We define and study r-Pell hybrid numbers based
on the r-Pell numbers and their properties. They are a generalization of Pell
hybrid numbers.

2. The r-Pell numbers

It is worth to mention that generalizations of Pell numbers are considered
mainly in two directions: by changing the initial conditions or changing their
recurrence relation. One of the generalizations of the Pell sequence is k-Pell
sequence introduced in [5]. For any positive integer k ≥ 1, k-Pell numbers Pk,n

are defined recurrently by Pk,n+1 = 2Pk,n+kPk,n−1 for n ≥ 1 with the initial
conditions Pk,0 = 0, Pk,1 = 1. Another interesting generalizations of the Pell
numbers are given in [11, 16]. In [2], a new one-parameter generalization of
the Pell numbers was investigated. We recall this generalization.

Let n ≥ 0, r ≥ 1 be integers, the r-Pell sequence {P (r, n)} is defined by
the following recurrence relation

(2.1) P (r, n) = 2rP (r, n− 1) + 2r−1P (r, n− 2) for n ≥ 2

with initial conditions P (r, 0) = 2, P (r, 1) = 1 + 2r+1. For r = 1, we have
P (1, n) = Pn+2.

Clearly, the first terms of the sequence {P (r, n)} have the form

P (r, 0) = 2,

P (r, 1) = 1 + 2r+1,

P (r, 2) = 2r+1 + 2 · 4r,

P (r, 3) = 2r−1 + 3 · 4r + 2 · 8r,

P (r, 4) =
3

2
· 4r + 4 · 8r + 2 · 16r,

P (r, 5) =
1

4
· 4r + 3 · 8r + 5 · 16r + 2 · 32r,

. . .

(2.2)
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so putting r = 1, we obtain the Pell sequence 2, 5, 12, 29, 70, 169, . . . starting
from 2 and 5.

Numbers P (r, n) have an interesting combinatorial interpretation, see for
details [2]. In this paper, we recall only some of them which will be used in
the next section.

Theorem 2.1 ([2]). Generating function of the sequence {P (r, n)} has the
following form f(t) = 2+t

1−2rt−2r−1t2 .

Theorem 2.2 (Binet formula [2]). Let n ≥ 0, r ≥ 1 be integers. Then
P (r, n) = C1r

n
1 + C2r

n
2 , where

r1 =
1

2
(2r +

√
4r + 2r+1), r2 =

1

2
(2r −

√
4r + 2r+1),(2.3)

C1 = 1 +
2r + 1√
4r + 2r+1

, C2 = 1− 2r + 1√
4r + 2r+1

.(2.4)

Proposition 2.3 ([2]). Let n ≥ 4, r ≥ 1 be integers. Then

P (r, n) = (8r + 4r)P (r, n− 3) + (23r−1 + 22r−2)P (r, n− 4).

Theorem 2.4 ([2]). Let n, r be positive integers. Then

(2.5)
n−1∑
l=0

P (r, l) =
P (r, n) + 2r−1P (r, n− 1)− 3

3 · 2r−1 − 1
.

Theorem 2.5 (convolution identity [2]). Let n,m, r be integers, m ≥
2, n ≥ 1, r ≥ 1. Then

(2.6) P (r,m+ n) = 2r−1P (r,m− 1)P (r, n) + 22r−2P (r,m− 2)P (r, n− 1).

Based on the definition of P (r, n) numbers, we define r-Pell hybrid num-
bers and next we describe some of their properties. In [3], P (r, n)-Pell quater-
nions were defined and studied. Based on this idea, we give the corresponding
results for the r-Pell hybrid numbers, however quaternions and hybrid num-
bers are totally distinct sets of numbers.
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3. Some identities involving the r-Pell hybrid numbers

Let n ≥ 0. Define the nth r-Pell hybrid number PHr
n in the following way

(3.1) PHr
n = P (r, n) + iP (r, n+ 1) + εP (r, n+ 2) + hP (r, n+ 3),

where P (r, n) is given by (2.1).
Using (3.1) and (2.2), we get

PHr
0 = 2 + i(1 + 2r+1) + ε(2r+1 + 2 · 4r) + h(2r−1 + 3 · 4r + 2 · 8r),(3.2)

PHr
1 = 1 + 2r+1 + i(2r+1 + 2 · 4r) + ε(2r−1 + 3 · 4r + 2 · 8r)

+ h
(3
2
· 4r + 4 · 8r + 2 · 16r

)
,

PHr
2 = 2r+1 + 2 · 4r + i(2r−1 + 3 · 4r + 2 · 8r)

+ ε
(3
2
· 4r + 4 · 8r + 2 · 16r

)
+ h

(1
4
· 4r + 3 · 8r + 5 · 16r + 2 · 32r

)
.

Now, we present the character of the r-Pell hybrid numbers.

Theorem 3.1. Let n ≥ 0, r ≥ 1 be integers. Then

C(PHr
n) =

(
1− 1

4
· 16r

)
P 2(r, n) + (1− 2r+1− 4r−1− 8r− 16r)P 2(r, n+ 1)

−
(
2r +

1

2
· 8r + 16r

)
P (r, n)P (r, n+ 1).

Proof. By (1.2) we have

C(PHr
n) = P 2(r, n) + P 2(r, n+ 1)

− 2P (r, n+ 1)P (r, n+ 2)− P 2(r, n+ 3)

= P 2(r, n) + P 2(r, n+ 1)

− 2P (r, n+ 1)(2rP (r, n+ 1) + 2r−1P (r, n))

−
(
(2r−1 + 4r)P (r, n+ 1) +

1

2
· 4rP (r, n)

)2
.

After simple calculations, we get the result. �
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Theorem 3.2. Let n ≥ 0, r ≥ 1 be integers. Then

(PHr
n)

2 = 2P (r, n)PHr
n − C (PHr

n) .

Proof. Using formula (3.1) and Table 1, we have

(PHr
n)

2 = P 2(r, n)− P 2(r, n+ 1) + P 2(r, n+ 3)

+ 2iP (r, n)P (r, n+ 1) + 2εP (r, n)P (r, n+ 2)

+ 2hP (r, n)P (r, n+ 3) + (εi+ iε)P (r, n+ 1)P (r, n+ 2)

+ (ih+ hi)P (r, n+ 1)P (r, n+ 3)

+ (εh+ hε)P (r, n+ 2)P (r, n+ 3)

= P 2(r, n)− P 2(r, n+ 1) + P 2(r, n+ 3)

+ 2P (r, n+ 1)P (r, n+ 2) + 2(iP (r, n)P (r, n+ 1)

+ εP (r, n)P (r, n+ 2) + hP (r, n)P (r, n+ 3))

= 2P (r, n+ 1)P (r, n+ 2) + 2P (r, n)PHr
n

− P 2(r, n)− P 2(r, n+ 1) + P 2(r, n+ 3)

= 2P (r, n)PHr
n − C (PHr

n) . �

The next theorem gives the recurrence form of r-Pell hybrid numbers.

Theorem 3.3. Let n ≥ 2, r ≥ 1 be integers. Then

PHr
n = 2rPHr

n−1 + 2r−1PHr
n−2,

where PHr
0 , PHr

1 are given by (3.2).

Proof. By (3.1) and (2.1), we have

2rPHr
n−1 + 2r−1PHr

n−2

= 2r(P (r, n− 1) + iP (r, n) + εP (r, n+ 1) + hP (r, n+ 2))

+ 2r−1(P (r, n− 2) + iP (r, n− 1) + εP (r, n) + hP (r, n+ 1))

= P (r, n) + iP (r, n+ 1) + εP (r, n+ 2) + hP (r, n+ 3) = PHr
n. �
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Theorem 3.4. Let n ≥ 4, r ≥ 1 be integers. Then

PHr
n = (8r + 4r)PHr

n−3 + (23r−1 + 22r−2)PHr
n−4.

Proof. Let A = 8r+4r, B = 23r−1+22r−2. Using Proposition 2.3, we get

PHr
n = P (r, n) + iP (r, n+ 1) + εP (r, n+ 2) + hP (r, n+ 3)

= A · P (r, n− 3) +B · P (r, n− 4) + i(A · P (r, n− 2) +B · P (r, n− 3))

+ ε(A · P (r, n− 1) +B · P (r, n− 2))+h(A · P (r, n) +B · P (r, n− 1))

= A(P (r, n− 3) + iP (r, n− 2) + εP (r, n− 1) + hP (r, n))

+B(P (r, n− 4) + iP (r, n− 3) + εP (r, n− 2) + hP (r, n− 1))

= A · PHr
n−3 +B · PHr

n−4. �

Theorem 3.5. Let n ≥ 0, r ≥ 1 be integers. Then

PHr
n − iPHr

n+1 − εPHr
n+2 − hPHr

n+3

= P (r, n) + P (r, n+ 2)− 2P (r, n+ 3)− P (r, n+ 6).

Proof. By simple calculations we have

PHr
n − iPHr

n+1 − εPHr
n+2 − hPHr

n+3

= P (r, n) + iP (r, n+ 1) + εP (r, n+ 2) + hP (r, n+ 3)

− i(P (r, n+ 1) + iP (r, n+ 2) + εP (r, n+ 3) + hP (r, n+ 4))

− ε(P (r, n+ 2) + iP (r, n+ 3) + εP (r, n+ 4) + hP (r, n+ 5))

− h(P (r, n+ 3) + iP (r, n+ 4) + εP (r, n+ 5) + hP (r, n+ 6))

= P (r, n) + P (r, n+ 2)− (1− h)P (r, n+ 3)

+ (ε+ i)P (r, n+ 4)− (h+ 1)P (r, n+ 3)

− (ε+ i)P (r, n+ 4)− P (r, n+ 6)

= P (r, n) + P (r, n+ 2)− 2P (r, n+ 3)− P (r, n+ 6). �
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Theorem 3.6 (Binet formula). Let n ≥ 0, r ≥ 1 be integers. Then

(3.3) PHr
n = C1r1r

n
1 + C2r2r

n
2 ,

where r1, r2, C1, C2 are given by (2.3) and (2.4), respectively, and

r1 = 1 + ir1 + εr21 + hr31, r2 = 1 + ir2 + εr22 + hr32.

Proof. By Theorem 2.2 we get

PHr
n = P (r, n) + iP (r, n+ 1) + εP (r, n+ 2) + hP (r, n+ 3)

= C1r
n
1 + C2r

n
2 + i(C1r

n+1
1 + C2r

n+1
2 ) + ε(C1r

n+2
1 + C2r

n+2
2 )

+ h(C1r
n+3
1 + C2r

n+3
2 )

= C1r
n
1

(
1 + ir1 + εr21 + hr31

)
+ C2r

n
2

(
1 + ir2 + εr22 + hr32

)
= C1r1r

n
1 + C2r2r

n
2 . �

Now, we give some identities such as Catalan, Cassini, d’Ocagne, and
Vajda type identities for the r-Pell hybrid numbers. These identities can be
proved by using Binet formula for these numbers. The following lemma will
be useful.

Lemma 3.7. Let r1 = 1+ ir1 + εr21 + hr31, r2 = 1+ ir2 + εr22 + hr32, where

r1 =
1

2
(2r +

√
4r + 2r+1), r2 =

1

2
(2r −

√
4r + 2r+1).

Then

r1 · r2 = 1 + 2r−1 − 22r−1 − 23r−3 + i(2r + 22r−1
√

4r + 2r+1)(3.4)

+ ε(4r + 2r + 3 · 22r−2
√

4r + 2r+1)

+ h(8r + 3 · 22r−1 − 2r−1
√

4r + 2r+1),

r2 · r1 = 1 + 2r−1 − 22r−1 − 23r−3 + i(2r − 22r−1
√

4r + 2r+1)(3.5)

+ ε(4r + 2r − 3 · 22r−2
√
4r + 2r+1)

+ h(8r + 3 · 22r−1 + 2r−1
√

4r + 2r+1).
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Proof. By Table 1 and simple calculations, we get

r1 · r2 = 1 + ir2 + εr22 + hr32 + ir1 − r1r2 + (1− h)r1r
2
2

+ (ε+ i)r1r
3
2 + εr21 + (h+ 1)r21r2 − εr21r32

+ hr31 − (ε+ i)r31r2 + εr31r
2
2 + r31r

3
2

= 1− r1r2 + r31r
3
2 + r1r

2
2 + r21r2 + i(r1 + r2 + r1r

3
2 − r31r2)

+ ε(r21 + r22 − r21r32 + r31r
2
2 + r1r

3
2 − r31r2) + h(r31 + r32 − r1r22 + r21r2).

Using the equalities

r1 · r2 = −2r−1,

r1 + r2 = 2r,

r21 + r22 = (r1 + r2)
2 − 2r1r2 = 4r + 2r,

r31 + r32 = (r1 + r2)
3 − 3r1r2(r1 + r2) = 8r + 3 · 22r−1,

we get the equality (3.4). We omit the proof of (3.5). �

Theorem 3.8 (Catalan type identity for r-Pell hybrid numbers). Let
n ≥ 0, m ≥ 0, r ≥ 1 be integers such that n ≥ m. Then

(PHr
n)

2 − PHr
n−m · PHr

n+m

= −(−1)n · (2r−1)n

4r + 2r+1

(
r1 · r2

[
1−

(r2
r1

)m]
+ r2 · r1

[
1−

(r1
r2

)m])
,

where r1 · r2, r2 · r1 are given by (3.4), (3.5), respectively.

Proof. By formula (3.3) we get

(PHr
n)

2 − PHr
n−m · PHr

n+m = (C1r1r
n
1 + C2r2r

n
2 )(C1r1r

n
1 + C2r2r

n
2 )

− (C1r1r
n−m
1 + C2r2r

n−m
2 )(C1r1r

n+m
1 + C2r2r

n+m
2 )

= C1C2r1 · r2(r1r2)n + C1C2r2 · r1(r1r2)n

− C1C2r1 · r2rn−m1 rn+m
2 − C1C2r2 · r1rn−m2 rn+m

1

= C1C2(r1r2)
n

(
r1 · r2

[
1−

(r2
r1

)m]
+ r2 · r1

[
1−

(r1
r2

)m])
.
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Since r1r2 = −2r−1 and C1C2 = − 1
4r+2r+1 , we get

(PHr
n)

2 − PHr
n−m · PHr

n+m

= −(−1)n · (2r−1)n

4r + 2r+1

(
r1 · r2

[
1−

(r2
r1

)m]
+ r2 · r1

[
1−

(r1
r2

)m])
,

which ends the proof. �

For m = 1, we obtain Cassini type identity for r-Pell hybrid numbers.

Corollary 3.9 (Cassini type identity for the r-Pell hybrid numbers). Let
n ≥ 1, r ≥ 1 be integers. Then

(PHr
n)

2−PHr
n−1 ·PHr

n+1 = −(−1)n · (2r−1)n

4r + 2r+1

(
r1 ·r2

r1 − r2
r1

+r2 ·r1
r2 − r1
r2

)
.

Now, we give some results for the Pell hybrid numbers PHn. Recall that
the Binet formula for the Pell hybrid numbers has the following form

PHn =
(1 +

√
2)n

2
√
2

r1 −
(1−

√
2)n

2
√
2

r2,

where

r1 = 1 + i(1 +
√
2) + ε(3 + 2

√
2) + h(7 + 5

√
2),

r2 = 1 + i(1−
√
2) + ε(3− 2

√
2) + h(7− 5

√
2).

Moreover, by (3.4) and (3.5), for r = 1 we have

r1 · r2 = −1 + i(2 + 4
√
2) + ε(6 + 6

√
2) + h(14− 2

√
2),(3.6)

r2 · r1 = −1 + i(2− 4
√
2) + ε(6− 6

√
2) + h(14− 2

√
2).(3.7)

Corollary 3.10 (Catalan type identity for the Pell hybrid numbers). Let
n ≥ 0, m ≥ 0 be integers such that n ≥ m. Then

(PHn)
2 − PHn−m · PHn+m

=
(−1)n−1

8

(
r1 · r2[1− (−3 + 2

√
2)m] + r2 · r1[1− (−3− 2

√
2)m]

)
,

where r1 · r2, r2 · r1 are given by (3.6), (3.7), respectively.
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Corollary 3.11 (Cassini type identity for the Pell hybrid numbers). Let
n ≥ 1 be an integer. Then

(PHn)
2 − PHn−1 · PHn+1 =

(−1)n−1

8

(
r1 · r2(4− 2

√
2) + r2 · r1(4 + 2

√
2)
)
.

Theorem 3.12 (Vajda type identity for r-Pell hybrid numbers). Let n ≥ 0,
m ≥ 0, k ≥ 0, r ≥ 1 be integers such that n ≥ k. Then

PHr
m+k · PHr

n−k − PHr
m · PHr

n

= − 1

4r + 2r+1

[
r1 · r2 rm1 rn2

((r1
r2

)k
− 1

)
+ r2 · r1 rn1 rm2

((r2
r1

)k
− 1

)]
,

where r1 · r2, r2 · r1 are given by (3.4), (3.5), respectively.

Proof. By formula (3.3), we get

PHr
m+k · PHr

n−k − PHr
m · PHr

n

= (C1r1r
m+k
1 + C2r2r

m+k
2 )(C1r1r

n−k
1 + C2r2r

n−k
2 )

− (C1r1r
m
1 + C2r2r

m
2 )(C1r1r

n
1 + C2r2r

n
2 )

= C1C2r1 · r2rm+k
1 rn−k2 + C1C2r2 · r1rn−k1 rm+k

2

− C1C2r1 · r2rm1 rn2 − C1C2r2 · r1rn1 rm2

= − 1

4r + 2r+1

[
r1 · r2 rm1 rn2

((r1
r2

)k
−1
)
+ r2 · r1 rn1 rm2

((r2
r1

)k
−1
)]

. �

Corollary 3.13 (Vajda type identity for the Pell hybrid numbers). Let
n ≥ 0, m ≥ 0, k ≥ 0 be integers such that n ≥ k. Then

PHm+k · PHn−k − PHm · PHn

=
(−1)m+1

8

[
r1 · r2 (1−

√
2)n−m

(
(−3− 2

√
2)k − 1

)
+r2 · r1 (1 +

√
2)n−m

(
(−3 + 2

√
2)k − 1

)]
,

where r1 · r2, r2 · r1 are given by (3.6), (3.7), respectively.
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Proof. By Theorem 3.12 we have

PHm+k · PHn−k − PHm · PHn

= −1

8

[
r1 · r2 rm1 rn2

((r1
r2

)k
− 1

)
+ r2 · r1 rn1 rm2

((r2
r1

)k
− 1

)]
,

where r1 = 1 +
√
2, r2 = 1−

√
2. It is easily seen that

1

r1
= −r2,

1

r2
= −r1,

rn1 r
m
2 = rn1

(
− 1

r1

)m
= (−1)mrn−m1 , rm1 r

n
2 =

(
− 1

r2

)m
rn2 = (−1)mrn−m2 ,

r1
r2

= −3− 2
√
2,

r2
r1

= −3 + 2
√
2.

Hence we get

PHm+k · PHn−k − PHm · PHn

= −1

8

[
r1 · r2 (−1)mrn−m2

(
(−3− 2

√
2)k − 1

)
+r2 · r1 (−1)mrn−m1

(
(−3 + 2

√
2)k − 1

)]
=

(−1)m+1

8

[
r1 · r2 (1−

√
2)n−m

(
(−3− 2

√
2)k − 1

)
+r2 · r1 (1 +

√
2)n−m

(
(−3 + 2

√
2)k − 1

)]
. �

Theorem 3.14 (d’Ocagne type identity for r-Pell hybrid numbers). Let
n ≥ 0, m ≥ 0, r ≥ 1 be integers such that n ≥ m. Then

PHr
n · PHr

m+1 − PHr
n+1 · PHr

m

= − 1√
4r + 2r+1

(
r2 · r1 rm1 rn2 − r1 · r2 rn1 rm2

)
,

where r1 · r2, r2 · r1 are given by (3.4), (3.5), respectively.
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Proof. Using the Binet type formula for the r-Pell hybrid numbers,
we get

PHr
n · PHr

m+1 − PHr
n+1 · PHr

m

= (C1r1r
n
1 + C2r2r

n
2 )(C1r1r

m+1
1 + C2r2r

m+1
2 )

− (C1r1r
n+1
1 + C2r2r

n+1
2 )(C1r1r

m
1 + C2r2r

m
2 )

= C1C2

(
r1 · r2rn1 rm2 (r2 − r1) + r2 · r1rn2 rm1 (r1 − r2)

)
= C1C2(r1 − r2)

(
r2 · r1rm1 rn2 − r1 · r2rn1 rm2

)
.

Since r1 − r2 =
√
4r + 2r+1, we have

PHr
m+k · PHr

n−k − PHr
m · PHr

n

= − 1√
4r + 2r+1

(
r2 · r1 rm1 rn2 − r1 · r2 rn1 rm2

)
,

which ends the proof. �

Corollary 3.15 (d’Ocagne type identity for the Pell hybrid numbers).
Let n ≥ 0, m ≥ 0 be integers such that n ≥ m. Then

PHn · PHm+1 − PHn+1 · PHm = − 1

2
√
2

(
r2 · r1 rm1 rn2 − r1 · r2 rn1 rm2

)
,

where r1 = 1 +
√
2, r2 = 1 −

√
2 and r1 · r2, r2 · r1 are given by (3.6), (3.7),

respectively.

The next theorems present the summation formulas for the r-Pell hybrid
numbers and Pell hybrid numbers.

Theorem 3.16. Let n ≥ 0, r ≥ 1 be integers. Then

n∑
l=0

PHr
l =

PHr
n+1 + 2r−1PHr

n − 3(1 + i+ ε+ h)

3 · 2r−1 − 1

−
(
2i+ ε(3 + 2r+1) + h(3 + 2 · 4r + 2r+2)

)
.
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Proof. By the definition of the r-Pell hybrid numbers and (2.5), we have

n∑
l=0

PHr
l = PHr

0 + PHr
1 + · · ·+ PHr

n

= P (r, 0) + P (r, 1) + · · ·+ P (r, n)

+ i (P (r, 1) + P (r, 2) + . . .+ P (r, n+ 1) + P (r, 0)− P (r, 0))

+ ε(P (r, 2) + P (r, 3) + · · ·+ P (r, n+ 2)

+ P (r, 0) + P (r, 1)− P (r, 0)− P (r, 1))

+ h(P (r, 3) + P (r, 4) + · · ·+ P (r, n+ 3) + P (r, 0) + P (r, 1)

+ P (r, 2)− P (r, 0)− P (r, 1)− P (r, 2))

=
1

3 · 2r−1 − 1
[P (r, n+ 1) + 2r−1P (r, n)− 3

+ i(P (r, n+ 2) + 2r−1P (r, n+ 1)− 3)

+ ε(P (r, n+ 3) + 2r−1P (r, n+ 2)− 3)

+ h(P (r, n+ 4) + 2r−1P (r, n+ 3)− 3)]

− iP (r, 0)− ε(P (r, 0) + P (r, 1))− h(P (r, 0) + P (r, 1) + P (r, 2)).

Hence, by (2.2), we obtain

n∑
l=0

PHr
l =

1

3 · 2r−1 − 1
[(P (r, n+ 1) + iP (r, n+ 2) + εP (r, n+ 3)

+ hP (r, n+ 4) + 2r−1(P (r, n) + iP (r, n+ 1) + εP (r, n+ 2)

+ hP (r, n+ 3))− 3(1 + i+ ε+ h)]

− 2i− ε(3 + 2r+1)− h(3 + 2 · 4r + 2r+2)

=
PHr

n+1 + 2r−1PHr
n − 3(1 + i+ ε+ h)

3 · 2r−1 − 1

−
(
2i+ ε(3 + 2r+1) + h(3 + 2 · 4r + 2r+2)

)
. �
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Theorem 3.17. Let n ≥ 0 be an integer. Then

n∑
l=0

PHl =
PHn+1 + PHn − 1− i− 3ε− 7h

2
.

Theorem 3.18 (convolution identity). Let m ≥ 2, n ≥ 1, r ≥ 1 be integers.
Then

2PHr
m+n = 2r−1PHr

m−1PH
r
n + 22r−2PHr

m−2PH
r
n−1 + P (r,m+ n)

+ P (r,m+ n+ 2)− 2P (r,m+ n+ 3)− P (r,m+ n+ 6).

Proof. By simple calculations we have

2r−1PHr
m−1PH

r
n + 22r−2PHr

m−2PH
r
n−1

= 2r−1[P (r,m− 1)P (r, n) + iP (r,m− 1)P (r, n+ 1)

+ εP (r,m− 1)P (r, n+ 2) + hP (r,m− 1)P (r, n+ 3)]

+ iP (r,m)P (r, n)− P (r,m)P (r, n+ 1) + (1− h)P (r,m)P (r, n+ 2)

+ (ε+ i)P (r,m)P (r, n+ 3) + εP (r,m+ 1)P (r, n)

+ (h+ 1)P (r,m+ 1)P (r, n+ 1)− εP (r,m+ 1)P (r, n+ 3)

+ hP (r,m+ 2)P (r, n)− (ε+ i)P (r,m+ 2)P (r, n+ 1)

+ εP (r,m+ 2)P (r, n+ 2) + P (r,m+ 2)P (r, n+ 3)]

+ 22r−2[P (r,m− 2)P (r, n− 1) + iP (r,m− 2)P (r, n)

+ εP (r,m− 2)P (r, n+ 1) + hP (r,m− 2)P (r, n+ 2)

+ iP (r,m− 1)P (r, n− 1)− P (r,m− 1)P (r, n)

+ (1− h)P (r,m− 1)P (r, n+ 1) + (ε+ i)P (r,m− 1)P (r, n+ 2)

+ εP (r,m)P (r, n− 1) + (h+ 1)P (r,m)P (r, n)− εP (r,m)P (r, n+ 2)

+ hP (r,m+ 1)P (r, n− 1)− (ε+ i)P (r,m+ 1)P (r, n)

+ εP (r,m+ 1)P (r, n+ 1) + P (r,m+ 1)P (r, n+ 2)].
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By (2.6) we get

2rPHr
m−1PH

r
n + 22r−2PHr

m−2PH
r
n−1

= 2r−1P (r,m− 1)P (r, n) + 22r−2P (r,m− 2)P (r, n− 1)

+ i(2rP (r,m− 1)P (r, n+ 1) + 22r−2P (r,m− 2)P (r, n))

+ ε(2rP (r,m− 1)P (r, n+ 2) + 22r−2P (r,m− 2)P (r, n+ 1))

+ h(2rP (r,m− 1)P (r, n+ 3) + 22r−2P (r,m− 2)P (r, n+ 2))

+ i(2rP (r,m)P (r, n) + 22r−2P (r,m− 1)P (r, n− 1))

+ ε(2rP (r,m+ 1)P (r, n) + 22r−2P (r,m)P (r, n− 1))

− h(2rP (r,m)P (r, n+ 2) + 22r−2P (r,m− 1)P (r, n+ 1))

− 2r−1P (r,m)P (r, n+ 1)− 22r−2P (r,m− 1)P (r, n)

+ 2r−1P (r,m+ 1)P (r, n+ 1) + 22r−2P (r,m)P (r, n)

+ 2r−1P (r,m)P (r, n+ 2) + 22r−2P (r,m− 1)P (r, n+ 1)

+ 2r−1P (r,m+ 2)P (r, n+ 3) + 22r−2P (r,m+ 1)P (r, n+ 2)

+ i[2r−1P (r,m)P (r, n+ 3) + 22r−2P (r,m− 1)P (r, n+ 2)

− 2r−1P (r,m+ 2)P (r, n+ 1)− 22r−2P (r,m+ 1)P (r, n)]

+ ε[2r−1P (r,m)P (r, n+ 3) + 22r−2P (r,m− 1)P (r, n+ 2)

− 2r−1P (r,m+ 2)P (r, n+ 1)− 22r−2P (r,m+ 1)P (r, n)

+ 2r−1P (r,m+ 2)P (r, n+ 2) + 22r−2P (r,m+ 1)P (r, n+ 1)

− 2r−1P (r,m+ 1)P (r, n+ 3)− 22r−2P (r,m)P (r, n+ 2)]

+ h[2rP (r,m+ 1)P (r, n+ 1) + 22r−2P (r,m)P (r, n)

+ 2r−1P (r,m+ 2)P (r, n) + 22r−2P (r,m+ 1)P (r, n− 1)].
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Using formula (2.6) again, we obtain

2r−1PHr
m−1PH

r
n + 22r−2PHr

m−2PH
r
n−1

= 2(P (r,m+ n) + iP (r,m+ n+ 1) + εP (r,m+ n+ 2) + hP (r,m+ n+ 3))

− (P (r,m+ n) + P (r,m+ n+ 2)− 2P (r,m+ n+ 3)− P (r,m+ n+ 6))

= 2PHr
m+n−P (r,m+n)−P (r,m+n+2)+2P (r,m+n+3)+P (r,m+n+6),

which ends the proof. �

Corollary 3.19 (convolution identity for the Pell hybrid numbers). Let
m ≥ 2, n ≥ 1 be integers. Then

2PHm+n−2 = PHm−1PHn + PHm−2PHn−1

+ Pm+n−2 + Pm+n − 2Pm+n+1 − Pm+n+4.

Theorem 3.20. Generating function for the r-Pell hybrid number se-
quence {PHr

n} is

G(t) =
PHr

0 + (PHr
1 − 2rPHr

0 )t

1− 2rt− 2r−1t2
.

Proof. Let G(t) =
∑∞

n=0 PH
r
nt

n. Then

(1− 2rt− 2r−1t2)G(t) = (1− 2rt− 2r−1t2) · (PHr
0 + PHr

1 t+ PHr
2 t

2 + · · · )

= PHr
0 + PHr

1 t+ PHr
2 t

2 + · · · − 2rPHr
0 t− 2rPHr

1 t
2 − 2rPHr

2 t
3 − · · ·

− 2r−1PHr
0 t

2 − 2r−1PHr
1 t

3 − 2r−1PHr
2 t

4 − · · ·

= PHr
0 + (PHr

1 − 2rPHr
0 )t,

since PHr
n = 2rPHr

n−1 + 2r−1PHr
n−2 and the coefficients of tn for n ≥ 2 are

equal to zero. Moreover, by (3.2), we have

PHr
0 = 2 + i(1 + 2r+1) + ε(2r+1 + 2 · 4r) + h(2r−1 + 3 · 4r + 2 · 8r),

PHr
1 − 2rPSQr

0 = 1 + i2r + ε(4r + 2r−1) + h(8r + 4r). �
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Corollary 3.21 ([19]). Generating function for the Pell hybrid number
sequence {PHn} is

∞∑
n=0

PHnt
n =

PH0 + (PH1 − 2PH0)t

1− 2t− t2
=

i+ 2ε+ 5h+ (1 + ε+ 2h)t

1− 2t− t2
.

4. Concluding remarks

In this paper, the sequence of r-Pell hybrid numbers was defined using
the concept of r-Pell numbers. By analogy, we can introduce the sequence of
r-Pell–Lucas numbers and next based on its properties, we can define differ-
ent types of r-Pell–Lucas hypercomplex numbers, for example r-Pell–Lucas
quaternions and r-Pell–Lucas hybrid numbers.
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