On a new generalization of Pell hybrid numbers



Abstract

In this paper, we define and study a new one-parameter generalization of the Pell hybrid numbers. Based on the definition of r-Pell numbers, we define the r-Pell hybrid numbers. We give their properties: character, Binet formula, summation formula, and generating function. Moreover, we present Catalan, Cassini, d’Ocagne, and Vajda type identities for the r-Pell hybrid numbers.


Keywords

recurrence relations; complex numbers; hyperbolic numbers; dual numbers; hybrid numbers; Pell hybrid numbers

F. Antonuccio, Split-quaternions and the Dirac equation, Adv. Appl. Clifford Algebr. 25 (2015), no. 1, 13–29.

D. Bród, On a new one parameter generalization of Pell numbers, Ann. Math. Sil. 33 (2019), no. 1, 66–76.

D. Bród and A. Szynal-Liana, On some combinatorial properties of P(r,n)-Pell quaternions, Tatra Mt. Math. Publ. 77 (2020), 1–12.

P. Catarino, On k-Pell hybrid numbers, J. Discrete Math. Sci. Cryptogr. 22 (2019), no. 1, 83–89.

P. Catarino, On some identities and generating functions for k-Pell numbers, Int. J. Math. Anal. (Ruse) 7 (2013), no. 38, 1877–1884.

P. Catarino and G. Bilgici, A note on modified k-Pell hybrid numbers, Konuralp J. Math. 8 (2020), no. 2, 229–233.

G. Cerda-Morales, Investigation of generalized Fibonacci hybrid numbers and their properties, Appl. Math. E-Notes 21 (2021), 110–118.

E. Eser, B. Kuloğlu, and E. Özkan, On the Mersenne and Mersenne–Lucas hybrinomial quaternions, Bull. Transilv. Univ. Braşov Ser. III. Math. Comput. Sci. 3(65) (2023), no. 1, 129–144.

A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (1965), 161–176.

C. Kızılateş, A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos Solitons Fractals 130 (2020), 109449, 5 pp.

E.G. Kocer and N. Tuglu, The Binet formulas for the Pell and Pell–Lucas p-numbers, Ars Combin. 85 (2007), 3–17.

M. Liana, A. Szynal-Liana, and I. Włoch, On Pell hybrinomials, Miskolc Math. Notes 20 (2019), no. 2, 1051–1062.

M. Özdemir, Introduction to hybrid numbers, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, Paper No. 11, 32 pp.

E. Özkan and M. Uysal, Mersenne–Lucas hybrid numbers, Math. Montisnigri 52 (2021), 17–29.

İ. Öztürk and M. Özdemir, Similarity of hybrid numbers, Math. Methods Appl. Sci. 43 (2020), no. 15, 8867–8881.

K. Piejko and I. Włoch, On k-distance Pell numbers in 3-edge-coloured graphs, J. Appl. Math. (2014), Art. ID 428020, 6 pp.

E. Polatlı, A note on ratios of Fibonacci hybrid numbers, Notes Number Theory Discrete Math. 27 (2021), 73–78.

Y. Soykan and E. Taşdemir, Generalized Tetranacci hybrid numbers, Ann. Math. Sil. 35 (2021), no. 1, 113–130.

A. Szynal-Liana, The Horadam hybrid numbers, Discuss. Math. Gen. Algebra Appl. 38 (2018), no. 1, 91–98.

A. Szynal-Liana and I. Włoch, Hypercomplex Numbers of the Fibonacci Type, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2019.

A. Szynal-Liana and I. Włoch, On Pell and Pell–Lucas hybrid numbers, Comment. Math. 58 (2018), no. 1–2, 11–17.

A. Szynal-Liana and I. Włoch, On special spacelike hybrid numbers, Mathematics 8 (2020), no. 10, 1671, 10 pp.

E. Tan and N.R. Ait-Amrane, On a new generalization of Fibonacci hybrid numbers, Indian J. Pure Appl. Math. 54 (2023), no. 2, 428–438.

Ü. Tokeşer, Z. Ünal, G. Bilgici, Split Pell and Pell–Lucas quaternions, Adv. Appl. Clifford Algebr. 27 (2017), no. 2, 1881–1893.

M. Uysal and E. Özkan, Padovan hybrid quaternions and some properties, J. Sci. Arts 22 (2022), no. 1, 121–132.

Download

Published : 2024-04-27


BródD., Szynal-LianaA., & WłochI. (2024). On a new generalization of Pell hybrid numbers. Annales Mathematicae Silesianae, 38(2), 221-240. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/17429

Dorota Bród  dorotab@prz.edu.pl
Wydział Matematyki i Fizyki Stosowanej, Politechnika Rzeszowska im. Ignacego Łukasiewicza  Poland
https://orcid.org/0000-0001-5181-1725
Anetta Szynal-Liana 
Wydział Matematyki i Fizyki Stosowanej, Politechnika Rzeszowska im. Ignacego Łukasiewicza  Poland
Iwona Włoch 
Wydział Matematyki i Fizyki Stosowanej, Politechnika Rzeszowska im. Ignacego Łukasiewicza  Poland



Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.

  1. License
    This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.
  2. Author’s Warranties
    The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s.
  3. User Rights
    Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor.
  4. Co-Authorship
    If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.