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FUNCTIONAL EQUATIONS
WITH AN ANTI-ENDOMORPHISM FOR FUNCTIONS

WITH MULTIDIMENSIONAL CODOMAINS

Ayoub Ouhabi , Driss Zeglami, Mohamed Ayoubi

Abstract. Let S be a semigroup, H be the skew field of quaternions, and
ψ : S → S be an anti-endomorphism. We determine the general solution of the
functional equation

g(xy)− g(xψ(y)) = 2g(x)g(y), x, y ∈ S,

where g : S → C is the unknown function. And when S = M is a monoid, we
solve the functional equation

g(xy) + g(xψ(y)) = 2g(x)g(y), x, y ∈M,

where g : M → H is the unknown function.

1. Introduction

Throughout this paper let S denote a semigroup andM a monoid (a semi-
group with a neutral element), and let Y ∈ {M,S}. The map ψ : Y → Y
denotes an anti-endomorphism of S (i.e., ψ(xy) = ψ(y)ψ(x) for all x, y ∈ Y ).
By ψ2, we mean ψ ◦ψ. Let f be a function on Y . We say that f is ψ-invariant
if f ◦ ψ = f . The function µ : Y → C is multiplicative, if µ(xy) = µ(x)µ(y)
for all x, y ∈ Y . H is the skew field of quaternions.
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D’Alembert’s classic functional equation

(1.1) g(x+ y) + g(x− y) = 2g(x)g(y), x, y ∈ R,

for functions g : R → C has it roots back in d’Alembert’s investigations of
vibrating strings [1] from 1750. Kannappan [9] solved the equation (1.1) on
abelian groups. His work was extended to general groups, even monoids or
semigroups (where inversion is replaced by an involution), by Davison [7],
Stetkær [12, 13, 14], Yang [15], and others.

The subject of functional equations with an anti-endomorphism has been
introduced since 2020 by Ayoubi and Zeglami in [2] where they characterized
the solutions of the functional equation

(1.2) d(xy) + d(xψ(y)) = 2d(x)d(y), x, y ∈M,

in which d : M → C is the unknown function. Later, inspired by Stetkær’s
paper [14], they [4] solved (1.2) in the setting of semigroups. Furthermore,
Ayoubi, Zeglami and Mouzoun proved in [6] that the solutions of the equation

(1.3) g(xy)− g(xψ(y)) = 2g(x)g(y), x, y ∈M,

are the functions g = 1
2µ, where µ : M → C is a multiplicative function

satisfying µ ◦ ψ = 0.
The purposes of the present is to generalize each of the two equations (1.3)

and (1.2) at the level of the range set of its unknown functions for the first
one and its codomain for the second. Precisely
1) We determine the general solution of the functional equation

(1.4) g(xy)− g(xψ(y)) = 2g(x)g(y), x, y ∈ S,

where g : S → C is the unknown function. When ψ is involutive, Stetkær
[12, Exercise 9.9] showed that g = 0 is the only complex-valued solution of
the functional equation (1.4). Another contribution in this direction is the
paper by Ebanks and Stetkær [8] where they solved the functional equation

f(xy)− f(y−1x) = g(x)h(y), x, y ∈ G,

in which f, g, h : G→ C are the unknown functions and G is a group.
2) We solve the functional equation

(1.5) g(xy) + g(xψ(y)) = 2g(x)g(y),

where g : M → H is the unknown function. Remark 3.3 gives an exam-
ple showing that non-central solutions of (1.5) exist. This is in contrast
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to the earlier resul about its complex-valued solutions which are all cen-
tral. Example 3.4 illustrates the structure of the solutions of d’Alembert
equation (1.5) for quaternion-valued functions on the (ax+ b)-group.

2. Solutions of the equation g(xy) − g(xψ(y)) = 2g(x)g(y)

The following theorem gives the general form of the solutions of the func-
tional equation (1.4).

Theorem 2.1. g : S → C is a solution of (1.4) if and only if it has the form

g =
m

2
,

where m : S → C is a multiplicative function satisfying m ◦ ψ = 0.

Proof. The result is true for g = 0. Let g : S → C be a non-zero solution
of (1.4) and let x0 ∈ S be such that g(x0) 6= 0. Let T (g) be the set of non-zero
functions f : S → C that satisfy the functional equation

(2.1) f(xy)− f(xψ(y)) = 2f(x)g(y), x, y ∈ S,

and f ◦ ψ = f . We examine two cases: T (g) is empty or not.
Case 1: We start with the case where T (g) is empty. Let x, y ∈ S be

arbitrary, we define the function h : S → C as follows

h(a) := g(y)g(xa)− g(x)g(ya), a ∈ S.

Using the fact that g satisfies (1.4) and the definition of h, we will show that
h satisfies the equation (2.1) and that h ◦ ψ = h. For any a, b ∈ S we have

h(ab)−h(aψ(b)) = g(y)g(xab)− g(x)g(yab)− g(y)g(xaψ(b)) + g(x)g(yaψ(b))

= g(y)
(
g(xab)− g(xaψ(b))

)
− g(x)

(
g(yab)− g(yaψ(b))

)
= 2g(y)g(xa)g(b)− 2g(x)g(ya)g(b)

= 2
(
g(y)g(xa)− g(x)g(ya)

)
g(b) = 2h(a)g(b).
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Then h satisfies the equation (2.1). For any a ∈ S we have

h(ψ(a)) = g(y)g(xψ(a))− g(x)g(yψ(a))

= g(y)
(
g(xa)− 2g(x)g(a)

)
− g(x)

(
g(ya)− 2g(y)g(a)

)
= g(y)g(xa)− 2g(y)g(x)g(a)− g(x)g(ya) + 2g(x)g(y)g(a)

= g(y)g(xa)− g(x)g(ya) = h(a),

which means that h ◦ ψ = h. So h = 0 because T (g) is empty. From the
definition of h, we find that g(y)g(xa) = g(x)g(ya) for all a, x, y ∈ S. Let
m(a) := g(x0a)

g(x0)
, a ∈ S. Then

(2.2) g(xa) = g(x)m(a), a, x ∈ S,

from which we get that

g(x0)m(ab) = g(x0ab) = g(x0a)m(b) = g(x0)m(a)m(b),

for all a, b ∈ S. It follows that m is multiplicative. From (1.4) and (2.2) we get

g(x0)
(
m(a)−m(ψ(a))

)
= g(x0)m(a)− g(x0)m(ψ(a))

= g(x0a)− g(x0ψ(a)) = 2g(x0)g(a), a ∈ S,

which implies that

(2.3) g =
m−m ◦ ψ

2
.

Note that m 6= m ◦ ψ because g 6= 0. Substituting (2.3) into (1.4) we obtain

m(xy)−m ◦ ψ(xy)
2

− m(xψ(y))−m ◦ ψ(xψ(y))
2

= 2
(m(x)−m ◦ ψ(x)

2

)(m(y)−m ◦ ψ(y)
2

)
, x, y ∈ S.

Then, after some reductions, we find

m ◦ ψ(x)
(
m(y) +m ◦ ψ2(y)− 2m ◦ ψ(y)

)
= 0,

for all x, y ∈ S. Since m 6= m ◦ ψ, it follows from [12, Corollary 3.19] that
m+m ◦ ψ2 6= 2m ◦ ψ and hence m ◦ ψ = 0 and g = m

2 .
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Case 2: T (g) is not empty. Here there is a function l which belongs to T (g).
This says that l : S → C satisfies

(2.4) l(xy)− l(xψ(y)) = 2l(x)g(y), x, y ∈ S,

l 6= 0 and l ◦ ψ = l. Using that l ◦ ψ = l = l ◦ ψ2 we compute with (2.4) as
follows

2l(x)g(ψ2(y)) = 2l(ψ2(x))g(ψ2(y)) = l(ψ2(x)ψ2(y))− l(ψ2(x)ψ(ψ2(y)))

= l(ψ2(xy))− l(ψ2(xψ(y))) = l(xy)− l(xψ(y))

= 2l(x)g(y), x, y ∈ S.

Since l 6= 0 we find that g ◦ ψ2 = g. Again the equation (2.4) together with
l ◦ ψ = l tell us that

l(ψ(x)y)− l(yx) = l(ψ(x)y)− l(ψ(x)ψ(y)) = 2l(ψ(x))g(y)(2.5)

= 2l(x)g(y), x, y ∈ S,

and

l(yx)− l(ψ(y)x) = l(ψ(x)ψ(y))− l(ψ(x)ψ2(y)) = 2l(ψ(x))g(ψ(y))(2.6)

= 2l(x)g ◦ ψ(y), x, y ∈ S.

Summing (2.5) and (2.6) gives us

l(ψ(x)y)− l(ψ(y)x) = 2l(x)
(
g(y) + g ◦ ψ(y)

)
, x, y ∈ S.

From this we get l(x)(g(y)+g ◦ψ(y)) = −l(y)(g(x)+g ◦ψ(x)) for all x, y ∈ S.
From [12, Exercise 1.1(b)] we read that g + g ◦ ψ = 0 because l 6= 0. Hence
g = −g ◦ ψ. Using this and (1.4) we find that

g(ψ2(x)y) = 2g(ψ2(x))g(y) + g(ψ2(x)ψ(y))

= −2g(ψ2(x))g(ψ(y)) + g(ψ2(x)ψ(y))

= g(ψ2(x)ψ2(y)) = g(ψ2(xy)) = g(xy), x, y ∈ S.

We follow the same procedure as in [12, Exercise 9.9] to obtain g = 0. �

Remark 2.2. Theorem 2.1 holds true if we replace C by a field K and 2
by a constant c ∈ K∗.
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3. Quaternion-valued solutions of d’Alembert’s equation

The following theorem determines the solutions of the functional equa-
tion (1.5). In the rest of this section, we denote the neutral element of M
by e.

Theorem 3.1. The solutions g : M → H of the functional equation (1.5)
are the following:
(1) There exists a multiplicative function µ : M → H with µ ◦ψ = 0 such that

g =
µ

2
.

(2) There exists a solution d : M → C of (1.2) with g(e) = 1 such that

g = Re(d) + Im(d) i.

(3) There exist a solution d : M → C of (1.2) with g(e) = 1 and Im(d) 6= 0,
β ∈ R∗, and θ ∈ R such that

g = Re(d) +
β − 1

β

β + 1
β

Im(d) i− 2 sin(θ)

β + 1
β

Im(d) j+
2 cos(θ)

β + 1
β

Im(d)k.

Proof. Let g = q1 + q2 i + q3 j + q4 k : M → H, where q1, q2, q3 and q4
are real-valued functions on M , be a solution of the functional equation (1.5).
We will examine two cases, g(e) 6= 1 or g(e) = 1.

Case 1: g(e) 6= 1. We follow the same procedure as in the proof of [2,
Case 1 of Theorem 3.2] to arrive at the solution in case 1 of our statement.

Case 2: g(e) = 1. We find, like in the proof of [2, Lemma 3.1(i)], that
g ◦ ψ = g. Using this we obtain, like in the proof of [5, Theorem 5.1], that

g(x)g(y) = g(y)g(x) for all x, y ∈ S.

With this property in mind, we prove in the same way as in the proof of [2,
Lemma 3.1(ii) and (iii)] that g is central and that

(3.1) g(xψ2(y)z) = g(xyz) for all x, y, z ∈M.

The matrix representation of quaternions reveals that the matrix function(
a b
−b a

)
,
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where a = q1 + q2i, b = q3 + q4i is a solution of the functional equation (1.5).
Then the pair (a, b) satisfies the system

a(xψ(y)) + a(xy) = 2a(x)a(y)− 2b(x)b(y), x, y ∈M,

b(xψ(y)) + b(xy) = 2a(x)b(y) + 2b(x)a(y), x, y ∈M.

Since g is central, ψ-invariant and satisfies (3.1) then so is each of the functions
qi, i ∈ {1, 2, 3, 4} and hence we have a ◦ ψ = a, b ◦ ψ = b, a and b are central,
and the two equalities

a(xψ2(y)z) = a(xyz),

b(xψ2(y)z) = b(xyz),

for all x, y, z ∈ M . We follow the same procedure as in the proof of [10,
Theorem 2.3] to arrive at the solution in case 2 or 3. �

Remark 3.2. The central multiplicative functions µ : S → H are described
in [11, Theorem 4.1].

Remark 3.3. [4, Theorem 3.2] tells us that the solutions of the equation
(1.2) are central. This property is not true in general for the solutions of
the equation (1.5) as the following illustrates: Let M = (H, ·), ψ = 0, and
g0 : (H, ·)→ H the function defined by g0(q) := 1

2q for all q ∈ H. The function
g0 is a solution of the equation (1.5) on (H, ·) and g0(ij) 6= g0(ji).

Example 3.4. Let M be the (ax+ b)-group from [12, Examples A.17(i)].
Let ψ be the anti-endomorphism defined by (a, b) 7→ (a, 0) for (a, b) ∈M . Note
that µ = 0 for any multiplicative function µ : M → H satisfying µ ◦ ψ = 0.
Indeed, if µ : M → H is multiplicative and µ ◦ ψ = 0, then for all (a, b) ∈ M
we have

µ
(
a, b

)
= µ

(
(a, b)× (1, 0)

)
= µ

(
(a, b)× ψ(1, 0)

)
= µ

(
a, b)× µ ◦ ψ

(
1, 0

)
= µ

(
a, b)× 0 = 0.

From [12, Example 3.13] we read that the continuous characters on the (ax+b)-
group are

mλ(a, b) = aλ, (a, b) ∈M,
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where λ ∈ C. Note that mλ ◦ ψ = mλ. Combining [4, Corollary 3.3] with
[3, Proposition 4.1(b)] and [12, Corollary 8.18], we find that the non-zero
continuous solutions of (1.2) are the following:

dλ(a, b) =
mλ(a, b) +mλ ◦ ψ(a, b)

2
= aλ, (a, b) ∈M,

where λ ∈ C. Let λ = λ1 + λ2 i with λ1, λ2 ∈ R, then

Re(aλ) = aλ1 cos(λ2 ln(a)) and Im(aλ) = aλ1 sin(λ2 ln(a)).

From Theorem 3.1 we conclude that the non-zero continuous solutions of (1.5)
are the following:
(1) There exist λ1, λ2 ∈ R such that

g(a, b) = Re(d(a, b)) + Im(d(a, b)) i

= aλ1 cos(λ2 ln(a)) + aλ1 sin(λ2 ln(a)) i,

for all (a, b) ∈M .
(2) There exist λ1, θ ∈ R and λ2, β ∈ R∗ such that

g(a, b) = aλ1 cos(λ2 ln(a)) +
β − 1

β

β + 1
β

aλ1 sin(λ2 ln(a)) i

− 2 sin(θ)

β + 1
β

aλ1 sin(λ2 ln(a)) j+
2 cos(θ)

β + 1
β

aλ1 sin(λ2 ln(a))k,

for all (a, b) ∈M .
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