T. Alkurdi, S. Hille, and O. van Gaans, Persistence of stability for equilibria of map iterations in Banach spaces under small random perturbations, Potential Anal. 42 (2015), no. 1, 175–201.
Google Scholar
M. Benaïm, S. Le Borgne, F. Malrieu, and P.-A. Zitt, Quantitative ergodicity for some switched dynamical systems, Electron. Commun. Probab. 17 (2012), no. 56, 14 pp.
Google Scholar
O.L.V. Costa and F. Dufour, Stability and ergodicity of piecewise deterministic Markov processes, SIAM J. Control Optim. 47 (2008), no. 2, 1053–1077.
Google Scholar
D. Czapla, K. Horbacz, and H. Wojewódka-Ściążko, A useful version of the central limit theorem for a general class of Markov chains, J. Math. Anal. Appl. 484 (2020), no. 1, 123725, 22 pp.
Google Scholar
D. Czapla, K. Horbacz, and H. Wojewódka-Ściążko, Ergodic properties of some piecewise-deterministic Markov process with application to gene expression modelling, Stochastic Process. Appl. 130 (2020), no. 5, 2851–2885.
Google Scholar
D. Czapla and J. Kubieniec, Exponential ergodicity of some Markov dynamical systems with application to a Poisson-driven stochastic differential equation, Dyn. Syst. 34 (2019), no. 1, 130–156.
Google Scholar
M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B 46 (1984), no. 3, 353–388.
Google Scholar
F. Dufour and O.L.V. Costa, Stability of piecewise-deterministic Markov processes, SIAM J. Control Optim. 37 (1999), no. 5, 1483–1502.
Google Scholar
S. Hille, K. Horbacz, and T. Szarek, Existence of a unique invariant measure for a class of equicontinuous Markov operators with application to a stochastic model for an autoregulated gene, Ann. Math. Blaise Pascal 23 (2016), no. 2, 171–217.
Google Scholar
K. Ito and F. Kappel, Evolution Equations and Approximations, Ser. Adv. Math. Appl. Sci., 61, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
Google Scholar
J. Kubieniec, The law of the iterated logarithm for random dynamical system with jumps and state-dependent jump intensity, Ann. Math. Sil. 35 (2021), no. 2, 236–249.
Google Scholar
A. Lasota, From fractals to stochastic differential equations, in: P. Garbaczewski et al. (eds.), Chaos - The Interplay Between Stochastic and Deterministic Behaviour, Lecture Notes in Phys., 457, Springer-Verlag, Berlin, 1995, pp. 235–255.
Google Scholar
A. Lasota and J.A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), no. 1, 41–77.
Google Scholar
M.C. Mackey, M. Tyran-Kamińska, and R. Yvinec, Dynamic behavior of stochastic gene expression models in the presence of bursting, SIAM J. Appl. Math. 73 (2013), no. 5, 1830–1852.
Google Scholar
T. Szarek, Invariant measures for Markov operators with application to function systems, Studia Math. 154 (2003), no. 3, 207–222.
Google Scholar
H. Wojewódka, Exponential rate of convergence for some Markov operators, Statist. Probab. Lett. 83 (2013), no. 10, 2337–2347.
Google Scholar