A transfunction is a function which maps between sets of finite measures on measurable spaces. In this paper we characterize transfunctions that correspond to Markov operators and to plans; such a transfunction will contain the “instructions” common to several Markov operators and plans. We also define the adjoint of transfunctions in two settings and provide conditions for existence of adjoints. Finally, we develop approximations of identity in each setting and use them to approximate weakly-continuous transfunctions with simple transfunctions; one of these results can be applied to some optimal transport problems to approximate the optimal cost with simple Markov transfunctions.
Download files
Citation rules
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.
You may also start an advanced similarity search for this article.
Vol. 39 No. 1 (2025)
Published: 2025-03-31