1. B.N. Allison, A class of nonassociative algebras with involution containing the class of Jordan algebras, Math. Ann. 237 (1978), no. 2, 133–156.
2. A. Elduque, N. Kamiya and S. Okubo, (-1,-1)-balanced Freudenthal Kantor triple systems and noncommutative Jordan algebras, J. Algebra, 294 (2005), no. 1, 19–40.
3. N. Kamiya, A Peirce decomposition for (-1,-1)-Freudenthal–Kantor triple systems, J. Gen. Lie Theory Appl. 2 (2008), no. 4, 273–285.
4. N. Kamiya and D. Mondoc, On constructions of Lie (super) algebras and (ε,δ)-Freudenthal–Kantor triple systems defined by bilinear forms, J. Algebra Appl. 19 (2020), no. 11, 2050223, 17 pp.
5. N. Kamiya, D. Mondoc, and S. Okubo, A review on δ-structurable algebras, in: V. Abramov et al. (eds.), Algebra, Geometry and Mathematical Physics, Banach Center Publ., 93, Polish Acad. Sci. Inst. Math., Warsaw, 2011, pp. 59–67.
6. N. Kamiya and S. Okubo, A construction of simple Jordan superalgebra of F type from a Jordan-Lie triple system, Ann. Mat. Pura Appl. (4) 181 (2002), no. 3, 339–348.
7. N. Kamiya and S. Okubo, Representations of (α,β,γ) triple system, Linear Multilinear Algebra 58 (2010), no. 5, 617–643.
8. N. Kamiya and S. Okubo, Triality of structurable and pre-structurable algebras, J. Algebra 416 (2014), 58–83.
9. N. Kamiya and S. Okubo, Symmetry of Lie algebras associated with (ε,δ)-Freudenthal–Kantor triple systems, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 1, 169–192.
10. N. Kamiya and S. Okubo, On triality relations for matrix algebras, RIMS Kokyuroku (Kyoto University) 2051 (2017), 14–24.
11. N. Kamiya and S. Okubo, A triality group for nonassociative algebras with involution, ArXiv:1609.05892, Algebras, Groups and Geometries, 35 (2018), no. 2, 113–168.
12. N. Kamiya and M. Sato, A class of Hermitian generalized Jordan triple systems and Chern-Simons gauge theory, Modern Phys. Lett. A 29 (2014), no. 29, 1450156, 7 pp.
13. N. Kamiya and M. Sato, Hermitian triple systems associated with bilinear forms and certain applications to field theory, Hadronic J. 37 (2014), no. 2, 131–147.
14. I.L. Kantor and N. Kamiya, A Peirce decomposition for generalized Jordan triple systems of second order, Comm. Algebra 31 (2003), no. 12, 5875–5913.
15. O. Loos, Symmetric Spaces, W.A. Benjamin, Inc., New York, 1969.
16. O. Loos, Lectures on Jordan Triples, The University of British Columbia, Vancouver, B.C., 1971.
17. K. Meyberg, Eine Theorie der Freudenthalschen Tripelsysteme. I, II, Indag. Math. 30 (1968), 162–174, 175–190.
18. S. Okubo, Introduction to Octonion and Other Non-Associative Algebras in Physics, Montroll Memorial Lecture Series in Mathematical Physics, 2, Cambridge University Press, Cambridge, 1995.
19. S. Okubo and N. Kamiya, Jordan-Lie superalgebra and Jordan-Lie triple system, J. Algebra 198 (1997), no. 2, 388–411.
20. I. Satake, Algebraic Structures of Symmetric Domains, Kanô Memorial Lectures, 4, Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., 1980.
21. R.D. Schafer, An Introduction to Nonassociatve Algebras, Pure and Applied Mathematics, 22, Academic Press, New York-London, 1966.
Google Scholar