1. J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, New York, 1989.
2. M. Ayoubi and D. Zeglami, D’Alembert’s functional equations on monoids with an anti-endomorphism, Results Math. 75 (2020), no. 2, Paper No. 74, 12 pp.
3. A.L. Cauchy, Cours d’Analyse de L’École Royale Polytechnique. Première Partie: Analyse Algébrique, De L’Imprimerie Royale, Paris, 1821.
4. A. Chahbi, B. Fadli, and S. Kabbaj, A generalization of the symmetrized multiplicative Cauchy equation, Acta Math. Hungar. 149 (2016), no. 1, 170–176.
5. J. d’Alembert, Addition au Mémoire sur la courbe que forme une corde tendue mise en vibration, Hist. Acad. Berlin 1750 (1750), 355–360.
6. B. Ebanks and H. Stetkær, d’Alembert’s other functional equation on monoids with an involution, Aequationes Math. 89 (2015), no. 1, 187–206.
7. B. Fadli, S. Kabbaj, K.H. Sabour, and D. Zeglami, Functional equations on semigroups with an endomorphism, Acta Math. Hungar. 150 (2016), no. 2, 363–371.
8. B. Fadli, D. Zeglami, and S. Kabbaj, A joint generalization of Van Vleck’s and Kannappan’s equations on groups, Adv. Pure Appl. Math. 6 (2015), no. 3, 179–188.
9. B. Fadli, D. Zeglami, and S. Kabbaj, A variant of Wilson’s functional equation, Publ. Math. Debrecen 87 (2015), no. 3-4, 415–427.
10. Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
11. K.H. Sabour, A. Charifi, and S. Kabbaj, On a variant of #-Wilson’s functional equation with an endomorphism, in: G.A. Anastassiou, J.M. Rassias (eds.), Frontiers in Functional Equations and Analytic Inequalities, Springer, Cham, 2019, pp. 93–111.
12. H. Stetkær, On multiplicative maps, Semigroup Forum 63 (2001), no. 3, 466–468.
13. H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co., Singapore, 2013.
14. H. Stetkær, A variant of d’Alembert’s functional equation, Aequationes Math. 89 (2015), no. 3, 657–662.
15. D. Zeglami, B. Fadli, and S. Kabbaj, Harmonic analysis and generalized functional equations for the cosine, Adv. Pure Appl. Math. 7 (2016), no. 1, 41–49.
Google Scholar