1. Artal Bartolo E., Cassou-Noguès P., Luengo I., Melle Hernández A., Quasi-ordinary power series and their zeta functions, Mem. Amer. Math. Soc. 178 (2005), no. 841, vi+85 pp.
2. Bosch S., Lütkebohmert W., Raynaud M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990.
3. Denef J., Report on Igusa’s local zeta function, Séminaire Bourbaki Vol. 1990/91, Astérisque (1991), no. 201–203, Exp. No. 741 (1992), 359–386.
4. Denef J., Hoornaert K., Newton polyhedra and Igusa’s local zeta function, J. Number Theory 89 (2001), no. 1, 31–64.
5. Denef J., Loeser F., Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505–537.
6. Denef J., Hoornaert K., Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232.
7. Denef J., Hoornaert K., On some rational generating series occurring in arithmetic geometry, in: Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 509–526.
8. Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
9. Guibert G., Espaces d’arcs et invariants d’Alexander, Comment. Math. Helv. 77 (2002), no. 4, 783–820.
10. Hartshorne R., Algebraic geometry, Springer-Verlag, New York, 1977.
11. Igusa J., A stationary phase formula for p-adic integrals and its applications, in: Algebraic geometry and its applications (West Lafayette, IN, 1990), Springer, New York, 1994, pp. 175–194.
12. Igusa J., An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2000.
13. Lichtin B., Meuser D., Poles of a local zeta function and Newton polygons, Compositio Math. 55 (1985), no. 3, 313–332.
14. Matsumura H., Commutative ring theory, Cambridge University Press, Cambridge, 1986.
15. Saia M.J., Zuniga-Galindo W.A., Local zeta function for curves, non-degeneracy conditions and Newton polygons, Trans. Amer. Math. Soc. 357 (2005), no. 1, 59–88.
16. Schoutens H., Classifying singularities up to analytic extensions of scalars is smooth, Ann. Pure Appl. Logic 162 (2011), 836–852.
17. Schoutens H., Schemic Grothendieck rings I: motivic sites, Preprint 2011.
18. Schoutens H., Schemic Grothendieck rings II: jet schemes and motivic integration, Preprint 2011.
19. Varchenko A., Zeta-function of monodromy and Newton’s diagram, Invent. Math. 37 (1976), no. 3, 253–262.
20. Veys W., Poles of Igusa’s local zeta function and monodromy, Bull. Soc. Math. France 121 (1993), no. 4, 545–598.
21. Veys W., Determination of the poles of the topological zeta function for curves, Manuscripta Math. 87 (1995), no. 4, 435–448.
22. Zúñiga-Galindo W., Igusa’s local zeta functions of semiquasihomogeneous polynomials, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3193–3207.
23. Zúñiga-Galindo W., Local zeta functions and Newton polyhedra, Nagoya Math. J. 172 (2003), 31–58.
Google Scholar