1. Argyros I.K., On the Newton–Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004), 315–332.
2. Argyros I.K., Ezquerro J.A., Gutiérrez J.M., Hernández M.A., Hilout S., On the semilocal convergence of efficient Chebyshev-Secant-type methods, J. Comput. Appl. Math. 235 (2011), 3195–3206.
3. Argyros I.K., Ren H., Efficient Steffensen-type algorithms for solving nonlinear equations, Int. J. Comput. Math. 90 (2013), 691–704.
4. Argyros I.K., Computational Theory of Iterative Methods, Studies in Computational Mathematics, 15, Elsevier B.V., New York, 2007.
5. Ezquerro J.A., Hernández M.A., An optimization of Chebyshev’s method, J. Complexity 25 (2009), 343–361.
6. Ezquerro J.A., Grau A., Grau-Sánchez M., Hernández M.A., Construction of derivative-free iterative methods from Chebyshev’s method, Anal. Appl. (Singap.) 11 (2013), 1350009, 16 pp.
7. Ezquerro J.A., Gutiérrez J.M., Hernández M.A., Salanova M.A., Chebyshev-like methods and quadratic equations, Rev. Anal. Numér. Théor. Approx. 28 (1999), 23–35.
8. Grau M., Díaz-Barrero J.L., An improvement of the Euler–Chebyshev iterative method, J. Math. Anal. Appl. 315 (2006), 1–7.
9. Grau-Sánchez M., Gutiérrez J.M., Some variants of the Chebyshev–Halley family of methods with fifth order of convergence, Int. J. Comput. Math. 87 (2010), 818–833.
10. Hueso J.L., Martinez E., Teruel C., Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems, J. Comput. Appl. Math. 275 (2015), 412–420.
11. Magreñán Á.A., Estudio de la dinámica del método de Newton amortiguado, PhD Thesis, Universidad de La Rioja, Servicio de Publicaciones, Logroño, 2013. Available at http://dialnet.unirioja.es/servlet/tesis?codigo=38821
12. Magreñán Á.A., Different anomalies in a Jarratt family of iterative root-finding methods, Appl. Math. Comput. 233 (2014), 29–38.
13. Magreñán Á.A., A new tool to study real dynamics: the convergence plane, Appl. Math. Comput. 248 (2014), 215–224.
14. Prashanth M., Mosta S.S., Gupta D.K., Semi-local convergence of the Supper-Halley’s method under w-continuous second derivative in Banach space. Submitted.
15. Rheinboldt W.C., An adaptive continuation process for solving systems of nonlinear equations, in: Tikhonov A.N., et al. (eds.), Mathematical Models and Numerical Methods, Banach Center Publ., 3, PWN, Warsaw, 1978, pp. 129–142.
16. Traub J.F., Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic Computation, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1964.
Google Scholar