1. F.M. Arscott, Two-parameter eigenvalue problems in differential equations, Proc. London Math. Soc. (3), 14, 1964, 459-470.
2. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin Heidelberg, 1985.
3. M. Greguš, F. Neuman, F.M. Arscott, Three-point boundary value problem in differential equations, J. London Math. Soc. (2), 3, 1971, 429-436.
4. P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
5. A. Haščák, Disconjugacy and multipoint boundary value problems for linear differential equations with delay, Czech. Math. J., 39 (114), 1989, 70-77.
6. A. Haščák, Tests for disconjugacy and strict disconjugacy of linear differential equations with delays, Czech Math. J., 39 (114), 1989, 225-231.
7. A. Haščák, On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay, Archivum Math. (Brno), 26, 1990, 207-214.
8. S. Staněk, Three-point boundary value problem of retarded functional differential equation of the second order with parameter, Acta UP, Fac. rer. nat. 97, Math. XXIX, 1990, 107-121.
9. S. Staněk, Multi-point boundary value problems for a class of functional differential equations with parameter, Math. Slovaca, 42, No. 1, 1992, 85-96.
10. S. Staněk, Boundary value problems for one-parameter second-order differential equations, Ann. Math. Silesianae 7, Katowice 1993, 89-98.
11. S. Staněk, On a class of functional boundary value problems for second-order functional differential equations with parameter, Czech. Math. J. 43 (118), 1993, 339-348.
12. S. Staněk, Leray-Schauder degree method in functional boundary value problems depending on the parameter, Math. Nach. 164, 1993, 333-344.
13. S. Staněk, On certain three-point regular boundary value problems for nonlinear second-order differential equations depending on the parameter, Acta Univ. Palacki. Ołomuc., Fac. rer. mat., Math. 34, 1995, 155-166.
14. S. Staněk, On a class of functional boundary value problems for the equation x" = f(t,x,x',x",λ), Ann. Polon. Math. 59, 1994, 225-237.
Google Scholar