1. Azpeitia A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), no. 1, 7–12.
2. Bhatia R., Matrix analysis, Springer-Verlag, New York, 1997.
3. Cheung W.-S., Dragomir S.S., Vector norm inequalities for power series of operators in Hilbert spaces, Tbilisi Math. J. 7 (2014), no. 2, 21–34.
4. Dragomir S.S., Cho Y.J., Kim S.S., Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000), no. 2, 489–501.
5. Dragomir S.S., A mapping in connection to Hadamard’s inequalities, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128 (1991), 17–20.
6. Dragomir S.S., Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992), 49–56.
7. Dragomir S.S., On Hadamard’s inequalities for convex functions, Math. Balkanica 6 (1992), 215–222.
8. Dragomir S.S., An inequality improving the second Hermite–Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Art. 35.
9. Dragomir S.S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (2006), 471–476.
10. Dragomir S.S., Gomm I., Bounds for two mappings associated to the Hermite–Hadamard inequality, Aust. J. Math. Anal. Appl. 8 (2011), Art. 5, 9 pp.
11. Dragomir S.S., Gomm I., Some new bounds for two mappings related to the Hermite–Hadamard inequality for convex functions, Numer. Algebra Cont. Optim. 2 (2012), no. 2, 271–278.
12. Dragomir S.S., Milośević D.S., Sándor J., On some refinements of Hadamard’s inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 21–24.
13. Dragomir S.S., Pearce C.E.M., Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, 2000. Available at http://rgmia.org/monographs/hermite_hadamard.html
14. Guessab A., Schmeisser G., Sharp integral inequalities of the Hermite–Hadamard type, J. Approx. Theory 115 (2002), no. 2, 260–288.
15. Kilianty E., Dragomir S.S., Hermite–Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. 13 (2010), no. 1, 1–32.
16. Matić M., Pečarić J., Note on inequalities of Hadamard’s type for Lipschitzian mappings, Tamkang J. Math. 32 (2001), no. 2, 127–130.
17. Merkle M., Remarks on Ostrowski’s and Hadamard’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113–117.
18. Mikusiński J., The Bochner integral, Birkhäuser Verlag, Basel, 1978.
19. Pearce C.E.M., Rubinov A.M., P-functions, quasi-convex functions, and Hadamard type inequalities, J. Math. Anal. Appl. 240 (1999), no. 1, 92–104.
20. Pečarić J., Vukelić A., Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions, in: Functional equations, inequalities and applications, Kluwer Acad. Publ., Dordrecht, 2003, pp. 105–137.
21. Toader G., Superadditivity and Hermite–Hadamard’s inequalities, Studia Univ. Babeş-Bolyai Math. 39 (1994), no. 2, 27–32.
22. Yang G.-S., Hong M.-C., A note on Hadamard’s inequality, Tamkang J. Math. 28 (1997), no. 1, 33–37.
23. Yang G.-S., Tseng K.-L., On certain integral inequalities related to Hermite–Hadamard inequalities, J. Math. Anal. Appl. 239 (1999), no. 1, 180–187.
Google Scholar