1. Alomari M., Darus M., On the Hadamard’s inequality for log-convex functions on the coordinates, J. Inequal. Appl. 2009, Article ID 283147, 13 pp.
2. Azócar A., Nikodem K., Roa G., Fejér-type inequalities for strongly convex functions, Ann. Math. Sil. 26 (2012), 43–53.
3. Azpeitia A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), 7–12.
4. Díaz R., Pariguan E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15 (2007), no. 2, 179–192.
5. Dragomir S.S., Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992), no. 1, 49–56.
6. Dragomir S.S., On some new inequalities of Hermite–Hadamard type for m-convex functions, Tamkang J. Math. 33 (2002), no. 1, 55–65.
7. Dragomir S.S., Agarwal R.P., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91–95.
8. Dragomir S.S., Pearce C.E.M., Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University, Melbourne, 2000.
9. Farid G., Rehman A.U., Zahra M., On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl. 21 (2016), no. 3, 463–478.
10. Fejér L., Über die Fourierreihen, II, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24 (1906), 369–390 (in Hungarian).
11. Gill P.M., Pearce C.E.M., Pečarić J., Hadamard’s inequality for r-convex functions, J. Math. Anal. Appl. 215 (1997), no. 2, 461–470.
12. İşcan İ., Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals, Stud. Univ. Babeş-Bolyai Math. 60 (2015), no. 3, 355–366.
13. Kirmaci U.S., Klaričić Bakula M., Özdemir M.E., Pečarić J., Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), no. 1, 26–35.
14. Klaričić Bakula M., Özdemir M.E., Pečarić J., Hadamard type inequalities for m-convex and (α,m)-convex functions, JIPAM. J. Inequal. Pure Appl. Math. 9 (2008), no. 4, Article 96, 12 pp.
15. Klaričić Bakula M., Pečarić J., Note on some Hadamard-type inequalities, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 3, Article 74, 9 pp.
16. Lesnic D., Characterizations of the functions with bounded variation, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI 2003), Part A, Acta Univ. Apulensis Math. Inform. 6 (2003), 47–54.
17. Mubeen S., Habibullah G.M., k-fractional integrals and application, Int. J. Contemp. Math. Sci. 7 (2012), no. 1–4, 89–94.
18. Sarikaya M.Z., Erden S., On the Hermite–Hadamard–Féjer type integral inequality for convex function, Turkish J. Anal. Number Theory 2 (2014), no. 3, 85–89.
19. Sarikaya M.Z., Set E., Yaldiz H., Başak N., Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling 57 (2013), no. 9–10, 2403–2407.
20. Wang J., Zhu C., Zhou Y., New generalized Hermite–Hadamard type inequalities and applications to special means, J. Inequal. Appl. 2013, Article ID 325, 15 pp.
21. Xiang R., Refinements of Hermite–Hadamard type inequalities for convex functions via fractional integrals, J. Appl. Math. Inform. 33 (2015), no. 1–2, 119–125.
Google Scholar