1. L. Ahlfors, Möbius transformations in several dimensions, University of Minesota, School of Mathematics (1981).
2. J.M. Anderson, J.G. Clunie, C.H. Pommerenki, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
3. S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
4. S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Springer-Verlag, New York 1992.
5. F. Beatrous, J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 256 (1986), 315-332.
6. R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several complex variables, Ann. of Math. 103 (1976), 611-635.
7. C. Fefferman, E.M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
8. G.H. Hardy, J.E. Littlewood, Some properties of conjugate function, J. Reine. Angew. Math. 167 (1931), 405-423.
9. U. Kuran, Subharmonic behaviour of |h|^p (p>0, h harmonic), J. London Math. Soc. 8 (1974), 529-538.
10. K. Muramoto, Harmonic Bloch and BMO functions on the unit ball in several variables, Tokyo J. Math. 11, 2 (1988), 381-386.
11. M. Nowak, Bloch space on the unit ball of C^n, Ann. Acad. Sci. Fenn. Math. 23 (1998), 461-473.
12. C. Ouyang, W. Weisheng, R. Zhao, Characterizations of Bergman spaces and Bloch space in the unit ball of C^n, Trans. Amer. Math. Soc. 347 (1995), 4301-4313.
13. M. Pavlović, On subharmonic behaviour of functions on balls in R^n, Publ. Inst. Math. (Belgrade), 55 (1994), 18-22.
14. M. Pavlović, Subharmonic behaviour of smooth functions, Mat. Vesnik 48, no. 1-2 (1996), 15-21.
15. S. Stević, An equivalent norm on BMO spaces, Acta Sci. Math. 66 (2000), 553-563.
16. S. Stević, On eigenfunctions of the Laplace operator on a bounded domain, Sci. Ser. A Math. Sci. (N.S.) 7 (2001), 51-55.
17. S. Stević, On subharmonic behaviour of functions in C^n, (to appear).
18. R.M. Timoney, Bloch functions in several complex variables, Bull. London Math. Soc. 12 (1980), 241-267.
Google Scholar