V.K. Bhardwaj and N. Singh, Some sequence spaces defined by Orlicz functions, Demonstratio Math. 33 (2000), no. 3, 571–582.
Google Scholar
T. Bilgin, Some new difference sequences spaces defined by an Orlicz function, Filomat No. 17 (2003), 1–8.
Google Scholar
E.W. Chittenden, On the limit functions of sequences of continuous functions converging relatively uniformly, Trans. Amer. Math. Soc. 20 (1919), no. 2, 179–184.
Google Scholar
K. Demirci, A. Boccuto, S. Yıldız, and F. Dirik, Relative uniform convergence of a sequence of functions at a point and Korovkin-type approximation theorems, Positivity 24 (2020), no. 1, 1–11.
Google Scholar
K. Demirci, F. Dirik, and S. Yıldız, Approximation via statistical relative uniform convergence of sequences of functions at a point with respect to power series method, Afr. Mat. 34 (2023), no. 3, Paper No. 39, 10 pp.
Google Scholar
K. Demirci and S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math. 69 (2016), no. 3–4, 359–367.
Google Scholar
K.R. Devi and B.C. Tripathy, On relative uniform convergence of double sequences of functions, Proc. Nat. Acad. Sci. India Sect. A 92 (2022), no. 3, 367–372.
Google Scholar
K.R. Devi and B.C. Tripathy, Relative uniform convergence of difference sequence of positive linear functions, Trans. A. Razmadze Math. Inst. 176 (2022), no. 1, 37–43.
Google Scholar
K.R. Devi and B.C. Tripathy, Relative uniform convergence of difference double sequence of positive linear functions, Ric. Mat. 72 (2023), no. 2, 961–972.
Google Scholar
M. Güngör, M. Et, and Y. Altin, Strongly (V_σ,λ,q)-summable sequences defined by Orlicz functions, Appl. Math. Comput. 157 (2004), no. 2, 561–571.
Google Scholar
F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193–203.
Google Scholar
J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379–390.
Google Scholar
E.H. Moore, Introduction to a Form of General Analysis, The New Haven Mathematical Colloquium, Yale University Press, New Haven, 1910.
Google Scholar
J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983.
Google Scholar
J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
Google Scholar
J. Musielak and W. Orlicz, On modular spaces of strongly summable sequences, Studia Math. 22 (1962/63), 127–146.
Google Scholar
J. Musielak and A. Waszak, Sequence spaces generated by moduli of smoothness, Rev. Mat. Univ. Complut. Madrid 8 (1995), no. 1, 91–105.
Google Scholar
H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508–512.
Google Scholar
S.D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math. 25 (1994), no. 4, 419–428.
Google Scholar
D. Rath and B.C. Tripathy, Characterization of certain matrix operations, J. Orissa Math. Soc. 8 (1989), 121–134.
Google Scholar
P.O. Şahin and F. Dirik, Statistical relative uniform convergence of double sequences of positive linear operators, Appl. Math. E-Notes 17 (2017), 207–220.
Google Scholar
W.L.C. Sargent, Some sequence spaces related to ????^p spaces, J. London Math. Soc. 35 (1960), 161–171.
Google Scholar
B.C. Tripathy, Matrix maps on the power-series convergent on the unit disc, J. Anal. 6 (1998), 27–31.
Google Scholar
B.C. Tripathy and S. Mahanta, On a class of sequences related to the ????^p space defined by Orlicz functions, Soochow J. Math. 29 (2003), no. 4, 379–391.
Google Scholar
B.C. Tripathy and M. Sen, On a new class of sequences related to the space ????^p, Tamkang J. Math. 33 (2002), no. 2, 167–171.
Google Scholar
S. Yıldız, K. Demirci, and F. Dirik, Korovkin theory via P_p-statistical relative modular convergence for double sequences, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 2, 1125–1141.
Google Scholar