1. J. Aczél, Vorlesungen über Funktionalgleichungen und ihre Anwendungen, Birkhäuser, Bâle 1961. (Version anglaise: Academic Press, New York 1966).
2. J. Aczél, J. Dhombres, Functional equations in several variables, University Press, Cambridge 1989.
3. A. Dinghas, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. AI, n° 375 (1966).
4. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
5. M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, Państwowe Wydawnictwo Naukowe, Varsovie 1985.
6. A. Simon, P. Volkmann, Eine Charakterisierung von polynomialen Funktionen mittels der Dinghasschen Intervall-Derivierten, Results Math. 26 (1994), 382-384.
7. P. Volkmann, Die Äquivalenz zweier Ableitungsbegriffe, Thèse, Université Libre de Berlin 1971.
8. Z. Gajda, Local stability of the functional equation characterizing polynomial functions, Ann. Polon. Math. 52 (1990), 119-137.
9. Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math. 22 (1989), 499-507.
10. F. Skof, Sull'approssimazione delle applicazioni localmente δ-additive, Atti Accad. Sci. Torino, Cl. Sci. Fiz. Mat. Natur. 117 (1983), 377-389.
11. F. Skof, Proprietà locali e approssimazione di operatori, Rendiconti Sem. Mat. Fis. Milano 53 (1983), 113-129 (1986).
12. J. Tabor, J. Tabor, Remark 15, 34th International Symposium on Functional Equations: Aequationes Math. 53 (1997), 192-193.
Google Scholar