LERAY-SCHAUDER DEGREE METHOD IN ONE-PARAMETER FUNCTIONAL BOUNDARY VALUE PROBLEMS

Svatoslav Staněk

Abstract. Sufficient conditions for the existence of solutions of one-parameter functional boundary value problems of the type

$$
\begin{gathered}
x^{\prime \prime}=f\left(t, x, x_{t}, x^{\prime}, x_{t}^{\prime}, \lambda\right), \\
\left(x_{0}, x_{0}^{\prime}\right) \in\{(\varphi, \chi+c) ; c \in \mathbf{R}\}, \alpha\left(\left.x\right|_{J}\right)=A, \beta(x(T)-x \mid J)=B
\end{gathered}
$$

are given. Here $f: J \times \mathbf{R} \times C_{r} \times \mathbf{R} \times C_{r} \times \mathbf{R} \rightarrow \mathbf{R}$ is continuous, $\varphi, \chi \in C_{r}, \alpha, \beta$ are continuous increasing functionals, $A, B \in \mathbf{R}$ and $\left.x\right|_{J}$ is the restriction of x to $J=[0, T]$. Results are proved by the Leray-Schauder degree method.

1. Introduction

Let $C_{r}(r>0)$ be the Banach space of C^{0}-functions on $[-r, 0]$ with the norm $\|x\|_{[-r, 0]}=\max \{|x(t)| ;-r \leq t \leq 0\}$. Let T be a positive constant. For every continuous function $x:[-r, T] \rightarrow \mathbb{R}$ and each $t \in[0, T]=: J$ denote by x_{t} the element of C_{r} defined by

$$
x_{t}(s)=x(t+s), \quad s \in[-r, 0]
$$

Let \mathbf{X} be the Banach space of C^{0}-functions on J endowed with the norm $\|x\|_{J}=\max \{|x(t)| ; t \in J\}$. Denote by \mathcal{D} the set of all functionals $\gamma: X \rightarrow \mathbb{R}$ which are
a) continuous, $\gamma(0)=0$,

Received October 25, 1994.

AMS (1991) subject classification: 34 K 10 .
Key words: One-parameter boundary value problem, existence of solutions, LeraySchauder degree, Borsuk theorem.
Supported by grant no. 201/93/2311 of the Grant Agency of Czech Rebublic.
b) increasing, i.e. $x, y \in \mathbf{X}, x(t)<y(t)$ for $t \in(0, T) \rightarrow \gamma(x)<\gamma(y)$, and
c) $\lim _{n \rightarrow \infty} \gamma\left(\varepsilon x_{n}\right)=\varepsilon \infty$ for each $\varepsilon \in\{-1,1\}$ and any sequence $\left\{x_{n}\right\} \subset \mathbf{X}$, $\lim _{n \rightarrow \infty} x_{n}(t)=\infty$ locally uniformly on $(0, T)$.
This paper is concerned with the functional boundary value problem (BVP for short)

$$
\begin{equation*}
x^{\prime \prime}=f\left(t, x, x_{t}, x^{\prime}, x_{t}^{\prime}, \lambda\right), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left(x_{0}, x_{0}^{\prime}\right) \in\{(\varphi, \chi+c) ; c \in \mathbb{R}\}, \alpha\left(\left.x\right|_{J}\right)=A, \beta\left(x(T)-\left.x\right|_{J}\right)=B \tag{2}
\end{equation*}
$$

depending on the parameter λ. Here $f: J \times \mathbb{R} \times C_{r} \times \mathbb{R} \times C_{r} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous operator, $\varphi, \chi \in C_{r}, \alpha, \beta \in \mathcal{D}, A, B \in \mathbb{R}$ and $\left.x\right|_{J}$ is the restriction of x to J.

By a solution of BVP(1), (2) we mean a pair (x, λ_{0}), where $\lambda_{0} \in \mathbb{R}$ and $x \in C^{0}([-r, T]) \cap C^{2}(J)$ is a solution of (1) for $\lambda=\lambda_{0}$ satisfying the last two conditions in (2) and $x_{t}(s)=\varphi(t+s), x_{t}^{\prime}(s)=\chi(t+s)-\chi(0)+x^{\prime}(0)$ for $0>t+s(\geq-r)$ and $x_{t}(s)=x(t+s), x_{t}^{\prime}(s)=x^{\prime}(t+s)$ for $0 \leq t+s(\leq T)$.

This definition of BVP (1), (2) is motivated by the Haščák definitions for multipoint boundary value problems for linear differential equations with delays ([5]-[7]).

Our objective is to look for sufficient conditions imposed upon the nonlinearity f in order to obtain solutions of BVP (1), (2). The proofs are based on the Leray-Schauder degree theory (see e.g. [2]).

We observe that sufficient conditions for the existence (and uniqueness) of solutions of BVP

$$
\begin{gathered}
y^{\prime \prime}-q(t) y=g\left(t, y_{t}, \lambda\right) \\
y_{0}=\varphi, \quad y\left(t_{1}\right)=y(T)=0 \quad\left(0<t_{1}<T\right)
\end{gathered}
$$

were obtained in [8] with $\varphi \in C_{r}, \varphi(0)=0$. The proof of the existence theorem is based on a combination of the Schauder linearization technique and the Schauder fixed point theorem. In [10] was studied BVP

$$
\begin{gathered}
x^{\prime \prime}=F\left(t, x, x_{t}, x^{\prime}, x_{t}^{\prime}, \lambda\right), \\
x_{0}=\varphi, \quad x^{\prime}(0)=x^{\prime}(T)=0
\end{gathered}
$$

with $\varphi \in C^{1}([-r, 0]), \varphi(0)=0=\varphi^{\prime}(0)$. The existence of solutions was proved by a combination of the Schauder quasilinearization technique and the Schauder fixed point theorem.

BVPs for second order differential and functional differential equations depending on the parameter were considered as a rule under linear boundary conditions using the schooting method ($[1,3]$), by the Schauder linearization method and the Schauder fixed point theorem ([9], [11]), by a surjectivity result in $\mathbb{R}^{n}([13])$, by a combination of the Schauder quasilinearization technique and the Schauder fixed point theorem ([14]) and by the Leray-Schauder degree theory ([12]).

2. Lemmas

Remark 1. By c) in the definition of $\mathcal{D}, \operatorname{Im} \gamma=\mathbb{R}$ for all $\gamma \in \mathcal{D}$, where $\operatorname{Im} \gamma$ denotes the range of γ.

Remark 2. The following example shows that assumptions a) and b) in the definition of \mathcal{D} don't imply its assumption c).

Example 1. Consider the functional $\gamma: \mathbf{X} \rightarrow \mathbb{R}$ defined by

$$
\gamma(x)=x(0)+x(T)+\operatorname{arctg} x(T / 2)
$$

Obviously, $\gamma(0)=0, \operatorname{Im} \gamma=\mathbb{R}, \gamma$ is continuous increasing. Set $x_{n}(t)=$ $n \sin (t \pi / T)$ for $t \in J$ and $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} x_{n}(t)=\infty$ locally uniformly on $(0, T)$ and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \gamma\left(\varepsilon x_{n}\right) & =\lim _{n \rightarrow \infty}\left(\varepsilon x_{n}(0)+\varepsilon x_{n}(T)+\operatorname{arctg}\left(\varepsilon x_{n}(\pi / 2)\right)\right) \\
& =\lim _{n \rightarrow \infty} \operatorname{arctg}(\varepsilon n \sin (\pi / 2)) \\
& =\lim _{n \rightarrow \infty} \operatorname{arctg}(\varepsilon n)=\varepsilon \pi / 2
\end{aligned}
$$

for $\varepsilon \in\{-1,1\}$.

ExAmple 2. Special cases of boundary conditions (2) are conditions
(3) $\quad \therefore x_{0}=\varphi, \quad x(\xi)=A, \quad x(T)=B_{1} \quad\left(A, B_{1} \in \mathbb{R}, \xi \in(0, T)\right)$,
(4)

$$
\begin{aligned}
x_{0}=\varphi, & \int_{0}^{\tau} x^{2 n+1}(s) d s=A, \quad x(T)=B+x(\xi) \\
& (A, B \in \mathbb{R}, n \in \mathbb{N}, \tau \in(0, T\rangle, \xi \in(0, T))
\end{aligned}
$$

$$
\begin{gather*}
x_{0}=\varphi, \quad x^{3}\left(\xi_{1}\right)+x\left(\xi_{2}\right)=A, \quad x(T)=B_{1}+(1 / \tau) \int_{0}^{\tau} x(s) d s \tag{5}\\
\left(A, B_{1} \in \mathbb{R}, 0 \leq \xi_{1}<\xi_{2} \leq T, \xi_{2}-\xi_{1}<T, \tau \in(0, T\rangle\right) \tag{6}
\end{gather*}
$$

$x_{0}=\varphi, \quad \max \left\{x(t) ; t \in\left[a_{1}, a_{2}\right]\right\}=A ; \quad \max \left\{x(T)-x(t) ; t \in\left[a_{3}, a_{4}\right]\right\}=B$ $\left(A, B \in \mathbb{R}, 0<a_{1}<a_{2}<T, 0<a_{3}<a_{4}<T\right)$.

Boundary conditions (3) (resp. (4); (5); (6)) we obtain setting (in (2))

$$
\begin{aligned}
& \alpha(x)=x(\xi), \quad \beta(x)=x(\xi), \quad B=B_{1}-A \\
& \left(\operatorname{resp} . \alpha(x)=\int_{0}^{\tau} x^{2 n+1}(s) d s, \beta(x)=x(\xi)\right. \\
& \alpha(x)=x^{3}\left(\xi_{1}\right)+x\left(\xi_{2}\right), \beta(x)=\int_{0}^{\tau} x(s) d s, B=\tau B_{1} \\
& \left.\alpha(x)=\max \left\{x(t) ; t \in\left[a_{1}, a_{2}\right]\right\}, \quad \beta(x)=\max \left\{x(t) ; t \in\left[a_{3}, a_{4}\right]\right\}\right)
\end{aligned}
$$

Lemma 1. Let $u, v \in \mathbf{X}, \alpha, \beta \in \mathcal{D}, c \in[0,1]$. Let

$$
\begin{gathered}
\alpha(x+u)+(c-1) \alpha(-x+u)=c \alpha(u) \\
\beta(y(T)-y+v)+(c-1) \beta(-y(T)+y+v)=c \beta(v)
\end{gathered}
$$

be satisfied for some $x, y \in \mathbf{X}$. Then there exist $\xi, \varrho \in(0, T)$ such that

$$
x(\xi)=0, \quad y(\varrho)=y(T)
$$

Proof. Define $\alpha_{1}, \beta_{1} \in \mathcal{D}$ by $\alpha_{1}(z)=\alpha(z+u)+(c-1) \alpha(-z+u)-$ $c \alpha(u), \beta_{1}(z)=\beta(z+v)+(c-1) \beta(-z+v)-c \beta(v)$. Assume $x(t) \neq$ $0, y(T)-y(t) \neq 0$ for $t \in(0, T)$. Then $\alpha_{1}(x) \neq 0, \beta_{1}(y(T)-y(t)) \neq 0$ which contradicts the assumptions $\alpha_{1}(x)=\alpha(x+u)+(c-1) \alpha(-x+u)-c \alpha(u)=$ $0, \beta_{1}(y(T)-y)=\beta(y(T)-y+v)+(c-1) \beta(-y(T)+y+v)-c \beta(v)=0$.

Lemma 2. Let $\alpha, \beta \in \mathcal{D}, u_{i}, v_{i} \in X(i=1,2), A, B \in \mathbb{R}$ and $v \in[0, \infty)$. Then there exist unique $a, \mu \in \mathbb{R}$ such that the equalities

$$
\begin{aligned}
& \alpha\left(a \sin (\pi t / T)+\mu(\cos (\pi t / T)-1)+u_{1}\right) \\
& -v \alpha\left(-a \sin (\pi t / T)-\mu(\cos (\pi t / T)-1)+u_{2}\right)=A,
\end{aligned}
$$

$$
\begin{gathered}
\beta\left(-a \sin (\pi t / T)-\mu(\cos (\pi t / T)+1)+v_{1}\right) \\
-v \beta\left(a \sin (\pi t / T)+\mu(\cos (\pi t / T)+1)+v_{2}\right)=B
\end{gathered}
$$

hold.
Proof. Define the continuous functions $p, q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
p(x, y)= & \alpha\left(x \sin (\pi t / T)+y(\cos (\pi t / T)-1)+u_{1}\right) \\
& -v \alpha\left(-x \sin (\pi t / T)-y(\cos (\pi t / T)-1)+u_{2}\right), \\
q(x, y)= & \beta\left(-x \sin (\pi t / T)-y(\cos (\pi t / T)+1)+v_{1}\right) \\
& -v \beta\left(x \sin (\pi t / T)+y(\cos (\pi t / T)+1)+v_{2}\right) .
\end{aligned}
$$

Since $\alpha, \beta \in \mathcal{D}, 0<\sin (\pi t / T) \leq 1,-2<\cos (\pi t / T)-1<0$ and $0<$ $\cos (\pi t / T)+1<2$ for $t \in(0, T)$, we see that (cf. the definition of $\mathcal{D}) p(\cdot, y)$ is increasing on \mathbb{R} and $p(x, \cdot), q(\cdot, y), q(x, \cdot)$ are decreasing on \mathbb{R} (for fixed $x, y \in \mathbb{R}$). Moreover,

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} p(x, y)=\varepsilon \infty, \quad \lim _{y \rightarrow \infty} p(x, y)=-\varepsilon \infty, \\
& \lim _{x \rightarrow \varepsilon \infty} q(x, y)=-\varepsilon \infty, \quad \lim _{y \rightarrow \infty \infty} q(x, y)=-\varepsilon \infty
\end{aligned}
$$

for $\varepsilon \in\{-1,1\}$ (and fixed $x, y \in \mathbb{R}$). Consequently, to each $x \in \mathbb{R}$ there exists a unique $y=r(x) \in \mathbb{R}$ such that $p(x, r(x))=A$. Evidently, $r: \mathbb{R} \rightarrow \mathbb{R}$ is continuous increasing, $\lim _{x \rightarrow \infty \infty} r(x)=\varepsilon \infty$ for $\varepsilon \in\{-1,1\}$ and setting $s(x)=$ $q(x, r(x))$ for $x \in \mathbb{R}, s$ is continuous decreasing, $\lim _{x \rightarrow \varepsilon \infty} s(x)=-\varepsilon \infty$ for $\varepsilon \in$ $\{-1,1\}$. Hence $s(a)=B$ for a unique $a \in \mathbb{R}$ and if we set $x=a, \mu=r(a)$, our lemma is proved.

Lemma 3. Let $\alpha, \beta \in \mathcal{D}, a, A, B \in \mathbb{R}$. Then the system of nonlinear equations

$$
\begin{equation*}
\alpha(a+x \sin (\pi t / T)+t y)=A, \quad \beta(-x \sin (\pi t / T)+(T-t) y)=B \tag{7}
\end{equation*}
$$

has a unique solution $(x, y) \in \mathbb{R}^{2}$.
Proof. We shall consider the continuous functions $p, q \in \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by
$p(x, y)=\alpha(a+x \sin (\pi t / T)+t y), \quad q(x, y)=\beta(-x \sin (\pi t / T)+(T-t) y)$.
Since $0<\sin (\pi t / T) \leq 1,0<t<T, 0<T-t<T$ for $t \in(0, T), p(\cdot, y)$, $p(x, \cdot), q(x, \cdot)$ are increasing on \mathbb{R} and $q(\cdot, y)$ is decreasing on \mathbb{R} (for each
fixed $x, y \in \mathbb{R}$). Moreover, $\lim _{x \rightarrow \varepsilon \infty} p(x, y)=\varepsilon \infty, \lim _{y \rightarrow \varepsilon \infty} p(x, y)=\varepsilon \infty$, $\lim _{y \rightarrow \varepsilon \infty} q(x, y)=\varepsilon \infty$ and $\lim _{x \rightarrow \varepsilon \infty} q(x, y)=-\varepsilon \infty$ for $\varepsilon \in\{-1,1\}$. In the same manner as in the proof of Lemma 2 we can verify that system (7) has a unique solution.

3. Existence theorems

Let $u, v \in \mathbf{X}$ and $\chi \in C_{r}$. Consider BVP

$$
\begin{equation*}
x^{\prime \prime}=h\left(t, x, x_{t}, x^{\prime}, x_{t}^{\prime}, \lambda\right), \tag{8}
\end{equation*}
$$

(9) $\left(x_{0}, x_{0}^{\prime}\right)$
$\in\{(0, \chi+c) ; c \in \mathbb{R}\}, \quad \alpha\left(u+\left.x\right|_{J}\right)=\alpha(u), \quad \beta\left(x(T)-\left.x\right|_{J}+v\right)=\beta(v)$
depending on the parameter λ. Here $h: J \times \mathbb{R} \times C_{r} \times \mathbb{R} \times C_{r} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous operator and $\alpha, \beta \in \mathcal{D}$.

Set $\mathcal{S}_{K}=\left\{x: x \in C_{r},\|x\|_{[-r, 0]} \leq K\right\}$ for each positive constant K and $\|x\|_{I}=\max \{|x(t)| ; t \in I\}$ for each compact $I \subset \mathbb{R}$ and $x \in C^{0}(I)$.

Theorem 1. Let $\chi \in C_{r}, m=\|\chi\|$. Assume there exist constants $K>0, \Lambda>0, M>0$ and a function $w_{1}:[0, \infty) \times[0, \infty) \rightarrow(0, \infty)$ nondecreasing in both its arguments such that
$\left(10^{\prime}\right) h(t, x, \psi, 0, \varrho, \Lambda) \geq 0 \quad$ for $\quad(t, x, \psi, \varrho) \in J \times[0, K] \times \mathcal{S}_{K} \times \mathcal{S}_{M+2 m}$,

$$
\begin{align*}
h(t, x, \psi, 0, \varrho,-\Lambda) & \leq 0 \\
\quad \text { for } \quad(t, x, \psi, \varrho) & \in J \times[-K, 0] \times \mathcal{S}_{K} \times \mathcal{S}_{M+2 m} \tag{10"}
\end{align*}
$$

$$
\begin{align*}
& h(t,-K, \psi, 0, \varrho, \lambda) \leq 0 \leq h(t, K, \psi, 0, \varrho, \lambda) \\
& \quad \text { for } \quad(t, \psi, \varrho, \lambda) \tag{11}
\end{align*} \in J \times \mathcal{S}_{K} \times \mathcal{S}_{M+2 m} \times[-\Lambda, \Lambda], ~ l
$$

$$
\begin{align*}
& |h(t, x, \psi, y, \varrho, \lambda)| \leq w_{1}\left(|y|,\|\varrho\|_{[-r, 0]}\right) \\
& \quad \text { for } \quad(t, x, \psi, \lambda) \in J \times[-K, K] \times \mathcal{S}_{K} \times[-\Lambda, \Lambda],(y, \varrho) \in \mathbb{R} \times C_{r} \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{M} \frac{s d s}{w_{1}(s, M+2 m)+(3 K / 2)(\pi / T)^{2}}>2 K . \tag{13}
\end{equation*}
$$

Then BVP (8), (9) has at least one solution (x, λ_{0}) satisfying

$$
\begin{equation*}
\|x\|_{J} \leq K, \quad\left\|x^{\prime}\right\|_{J} \leq M, \quad\left|\lambda_{0}\right| \leq \Lambda . \tag{14}
\end{equation*}
$$

Proof. Define the continuous operator $h^{*}: J \times \mathbb{R} \times C_{r} \times \mathbb{R} \times C_{r} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
h^{*}(t, x, \psi, y, \varrho, \lambda)=h(t, x, \psi, y, \hat{\varrho}, \lambda) \tag{15}
\end{equation*}
$$

where $(s \in[-r, 0])$

$$
\hat{\varrho}(s)= \begin{cases}M+2 m & \text { for } \varrho(s)>M+2 m \\ \varrho(s) & \text { for }|\varrho(s)| \leq M+2 m \\ -(M+2 m) & \text { for } \varrho(s)<-(M+2 m)\end{cases}
$$

Consider the equation

$$
\begin{equation*}
x^{\prime \prime}=c . h^{*}\left(t, x, x_{t}, x^{\prime}, x_{t}^{\prime}, \lambda\right)+(1-c)\left(\varepsilon^{2} x+k \lambda\right), \quad c \in[0,1], \tag{c}
\end{equation*}
$$

where

$$
\varepsilon=\frac{\pi}{T}, \quad k=\frac{\pi^{2} K}{2 T^{2} \Lambda}
$$

Let $\left(x_{c}, \lambda_{c}\right)$ be a solution of BVP $\left(16_{c}\right),\left(16_{c}^{\prime}\right)$ with a $c \in[0,1)$ such that $\left\|x_{c}\right\|_{J} \leq K,\left|\lambda_{c}\right| \leq \Lambda$, where

$$
\begin{align*}
& \left(x_{c 0}, x_{c 0}^{\prime}\right) \in\{(0, \chi+d) ; d \in \mathbb{R}\} \\
& \alpha\left(u+\left.x_{c}\right|_{J}\right)+(c-1) \alpha\left(u-\left.x_{c}\right|_{J}\right)=c \alpha(u), \tag{c}\\
& \beta\left(x_{c}(T)-\left.x_{c}\right|_{J}+v\right)+(c-1) \beta\left(-x_{c}(T)+\left.x_{c}\right|_{J}+v\right)=c \beta(v) .
\end{align*}
$$

We shall prove

$$
\begin{align*}
& \left\|x_{c}\right\|_{J}<K, \quad\left\|x_{c}^{\prime}\right\|_{J}<M \\
& \left\|x_{c}^{\prime \prime}\right\|_{J}<w_{1}(M, M+2 m)+(3 K / 2)(\pi / T)^{2}, \quad\left|\lambda_{c}\right|<\Lambda . \tag{17}
\end{align*}
$$

Assume $\lambda_{c}=\Lambda$. By Lemma 1 (with $c=1$) $x_{c}(v)=0, x_{c}(T)=x_{c}(\xi)$ for some $v, \xi \in(0, T)$ and therefore $0 \leq \max \left\{x_{c}(t) ; t \in J\right\}=x_{c}(\tau)$ for a $\tau \in(0, T)$. Then $x_{c}^{\prime}(\tau)=0, x_{c}^{\prime \prime}(\tau) \leq 0$ which contradicts (cf. (10^{\prime}) and (15)) $x_{c}^{\prime \prime}(\tau)=c . h^{*}\left(\tau, x_{c}(\tau), x_{c \tau}, 0, x_{c \tau}^{\prime}, \Lambda\right)+(1-c)\left(\varepsilon^{2} x_{c}(\tau)+k \Lambda\right)>0$. Let $\lambda_{c}=-\Lambda$. Then $0 \geq \min \left\{x_{c}(t) ; t \in J\right\}=x_{c}(\mu)$ for a $\mu \in(0, T)$ and $x_{c}^{\prime}(\mu)=0, x_{c}^{\prime \prime}(\mu) \geq 0$ which contradicts (cf. (10") and (15)) $x_{c}^{\prime \prime}(\mu)=$
$c . h^{*}\left(\mu, x_{c}(\mu), x_{c \mu}, 0, x_{c \mu^{\prime}}^{\prime},-\Lambda\right)+(1-c)\left(\varepsilon^{2} x_{c}(\mu)-k \Lambda\right)<0$. Hence $\left|\lambda_{c}\right|<\Lambda$. Let $\left\|x_{c}\right\|_{J}=K$, for example let $x_{c}(\kappa)=K$ with a $\kappa \in(0, T)$ (see Lemma 1 with $c=1$). Then $x_{c}^{\prime}(\kappa)=0, x_{c}^{\prime \prime}(\kappa) \leq 0$ which contradicts (cf. (11) and (15)) $x_{c}^{\prime \prime}(\kappa)=c . h^{*}\left(\kappa, K, x_{c \kappa}, 0, x_{c \kappa}, \lambda_{c}\right)+(1-c)\left(\varepsilon^{2} K+k \lambda_{c}\right) \geq(1-c)\left(\varepsilon^{2} K-\right.$ $k \Lambda)=(1-c)\left(\pi^{2} K / 2 T^{2}\right)>0$. Hence $\left\|x_{c}\right\|_{J}<K$. Since $x_{c}(v)=0$ and $x_{c}(0)=0, x_{c}^{\prime}(\eta)=0$ for an $\eta \in(0, v)$ and, moreover,

$$
\begin{align*}
\left|x_{c}^{\prime \prime}(t)\right| & \leq c\left|h^{*}\left(t, x_{c}(t), x_{c t}, x_{c}^{\prime}(t), x_{c t}^{\prime}, \lambda_{c}\right)\right|+(1-c)\left(\varepsilon^{2} K+k \Lambda\right) \\
& <w_{1}\left(\left|x_{c}^{\prime}(t)\right|, M+2 m\right)+(3 K / 2)(\pi / T)^{2} \tag{18}
\end{align*}
$$

for $t \in J$ by (12) and (15). So, using (13), (18) and a standard procedure (see e.g. [4]) we can prove $\left\|x_{c}^{\prime}\right\|_{J}<M$. Finally, $\left\|x_{c}^{\prime \prime}\right\|_{J}<w_{1}\left(\left\|x_{c}^{\prime}\right\|_{J}, M+\right.$ $2 m)+(3 K / 2)(\pi / T)^{2} \leq w_{1}(M, M+2 m)+(3 K / 2)(\pi / T)^{2}$ and (17) is proved.

Let $\mathbf{Y}_{i}(i=1,2)$ be the Banach space of C^{i}-functions on J with the norm $\|x\|_{i}=\sum_{j=0}^{i}\left\|x^{(j)}\right\|_{J}, Y_{0 i}=\left\{x ; x \in Y_{i}, x(0)=0\right\}$. Define the operators

$$
U, H, V: \mathbf{Y}_{02} \times \mathbb{R} \rightarrow \mathbf{X} \times \mathbb{R}^{2}
$$

by

$$
\begin{aligned}
(U(x, \lambda))(t)= & \left(x^{\prime \prime}(t)+\varepsilon^{2} x(t)+k \lambda, \quad \alpha(x+u)-\alpha(-x+u),\right. \\
& \beta(x(T)-x+v)-\beta(-x(T)+x+v)), \\
(H(x, \lambda))(t)= & \left(h^{*}\left(t, x(t), x_{t}, x^{\prime}(t), x_{x}^{\prime}, \lambda\right), \quad \alpha(u)-\alpha(-x+u),\right. \\
& \beta(v)-\beta(-x(T)+x+v)), \\
& (V(x, \lambda))(t)=\left(\varepsilon^{2} x(t)+k \lambda, 0,0\right),
\end{aligned}
$$

where

$$
\begin{gathered}
x_{t}(s)=\left\{\begin{array}{lr}
0 & \text { for } t+s<0 \\
x(t+s) & \text { for } t+s \geq 0,
\end{array}\right. \\
x_{t}^{\prime}(s)=\left\{\begin{array}{lr}
\chi(t+s)-\chi(0)+x^{\prime}(0) & \text { for } t+s<0 \\
x^{\prime}(t+s) & \text { for } t+s \geq 0
\end{array}\right.
\end{gathered}
$$

Consider the operator equation

$$
\begin{equation*}
U(x, \lambda)=c(H(x, \lambda)+V(x, \lambda))+2(1-c) V(x, \lambda), \quad c \in[0,1] . \tag{c}
\end{equation*}
$$

We see that BVP (8), (9) with $h=h^{*}$ has a solution $\left(x, \lambda_{0}\right)$ if $\left(\left.x\right|_{J}, \lambda_{0}\right)$ is a solution of $\left(19_{1}\right)$ and conversely, if $\left(x, \lambda_{0}\right)$ is a solution of $\left(19_{1}\right)$, then $\left(z, \lambda_{0}\right)$ is a solution of BVP (8), (9) with $h=h^{*}$ where $\left(z_{0}, z_{0}^{\prime}\right)=(0, \chi-\chi(0)+$ $\left.x^{\prime}(0)\right),\left.z\right|_{J}=x$. So, to prove the existence of solutions of BVP (8), (9) with $h=h^{*}$ it is sufficient to show that (19 $)$ has a solution.

We shall prove that $U: \mathbf{Y}_{02} \times \mathbb{R} \rightarrow \mathbf{X} \times \mathbb{R}^{\mathbf{2}}$ is one to one and onto. Let $(z, a, b) \in \mathbf{X} \times \mathbb{R}^{2}$ and consider the operator equation

$$
U(x, \lambda)=(z, a, b)
$$

that is the equations

$$
\begin{equation*}
x^{\prime \prime}+\varepsilon^{2} x+k \lambda=z(t) \tag{20'}
\end{equation*}
$$

$\left(20^{\prime \prime}\right) \alpha(x+u)-\alpha(-x+u)=a, \quad \beta(x(T)-x+v)-\beta(-x(T)+x+v)=b$,
where $x \in Y_{02}, \lambda \in \mathbb{R}$. The function $x(t)=c_{1} \sin (\varepsilon t)+c_{2} \cos (\varepsilon t)-\left(k \lambda / \varepsilon^{2}\right)+$ $w(t)$ is the general solution of $\left(20^{\prime}\right)$ where $w(t)=(1 / \varepsilon) \int_{0}^{t} z(s) \sin (\varepsilon(t-s)) d s$ and c_{1}, c_{2} are integration constants. The function x satisfies (20") and $x(0)=$ 0 if and only if $c_{2}=k \lambda / \varepsilon^{2}$ and $\left(c_{1}, \lambda\right)$ is a solution of the system

$$
\begin{gathered}
\alpha\left(c_{1} \sin (\varepsilon t)+\left(k \lambda / \varepsilon^{2}\right)(\cos (\varepsilon t)-1)+w+u\right) \\
-\alpha\left(-c_{1} \sin (\varepsilon t)-\left(k \lambda / \varepsilon^{2}\right)(\cos (\varepsilon t)-1)-w+u\right)=a, \\
\beta\left(-c_{1} \sin (\varepsilon t)-\left(k \lambda / \varepsilon^{2}\right)(1+\cos (\varepsilon t))+w(T)-w+v\right) \\
-\beta\left(c_{1} \sin (\varepsilon t)+\left(k \lambda / \varepsilon^{2}\right)(1+\cos (\varepsilon t))-w(T)+w+v\right)=b,
\end{gathered}
$$

since $\varepsilon T=\pi$. By Lemma 2 (with $a=c_{1}, \mu=k \lambda / \varepsilon^{2}, u_{1}=w+u, u_{2}=$ $\left.-w+u, v_{1}=w(T)-w+v, v_{2}=-w(T)+w+v, A=a, B=b\right)$, there exists a unique solution $(\bar{c}, \bar{\lambda})$ of the above system. Hence $U^{-1}: \mathbf{X} \times \mathbb{R}^{2} \rightarrow$ $\mathbf{Y}_{02} \times \mathbb{R}$ exists. Let $(x, \lambda) \in \mathbf{Y}_{02} \times \mathbb{R}$ and set $U(x, \lambda)=(z, a, b), U(-x,-\lambda)=$ $\left(z_{1}, a_{1}, b_{1}\right)$. Then

$$
x^{\prime \prime}(t)+\varepsilon^{2} x(t)+k \lambda=z(t), \quad-x^{\prime \prime}(t)-\varepsilon^{2} x(t)-k \lambda=z_{1}(t) \quad \text { for } \quad t \in J
$$

and

$$
\begin{array}{cl}
\alpha(x+u)-\alpha(-x+u)=a, & \beta(x(T)-x+v)-\beta(-x(T)+x+v)=b \\
\alpha(-x+u)-\alpha(x+u)=a_{1}, & \beta(-x(T)+x+v)-\beta(x(T)-x+v)=b_{1}
\end{array}
$$

Therefore $z_{1}=-z, a_{1}=-a, b_{1}=-b$ and consequently

$$
U(x, \lambda)=-U(-x,-\lambda)
$$

for all $(x, \lambda) \in \mathbf{Y}_{02} \times \mathbb{R}$. So U is an odd operator and then U^{-1} is odd as well.

In order to prove that U^{-1} is a continuous operator let $\left\{\left(z_{n}, a_{n}, b_{n}\right)\right\} \subset$ $\mathbf{X} \times \mathbb{R}^{2}$ be a convergent sequence, $\left(z_{n}, a_{n}, b_{n}\right) \rightarrow(z, a, b)$ as $n \rightarrow \infty$. Set $\left(x_{n}, \lambda_{n}\right)=U^{-1}\left(z_{n}, a_{n}, b_{n}\right),(x, \lambda)=U^{-1}(z, a, b)$. Then $x_{n}^{\prime \prime}(t)+\varepsilon^{2} x_{n}(t)+k \lambda_{n}=z_{n}(t), \quad x^{\prime \prime}(t)+\varepsilon^{2} x(t)+k \lambda=z(t) \quad$ for $t \in J, n \in \mathbb{N}$ and there exist sequences $\left\{c_{n}\right\},\left\{d_{n}\right\} \subset \mathbb{R}$ and $c, d \in \mathbb{R}$ such that

$$
\begin{align*}
& \quad \alpha\left(c_{n} \sin (\varepsilon t)+d_{n}(\cos (\varepsilon t)-1)+w_{n}+u\right) \\
& -\alpha\left(-c_{n} \sin (\varepsilon t)-d_{n}(\cos (\varepsilon t)-1)-w_{n}+u\right)=a_{n}
\end{align*}
$$

$$
\begin{gather*}
\beta\left(-c_{n} \sin (\varepsilon t)-d_{n}(1+\cos (\varepsilon t))+w_{n}(T)-w+v\right) \\
-\beta\left(c_{n} \sin (\varepsilon t)+d_{n}(1+\cos (\varepsilon t))-w_{n}(T)+w+v\right)=b_{n}
\end{gather*}
$$

$$
\alpha(c \sin (\varepsilon t)+d(\cos (\varepsilon t)-1)+w+u)
$$

$$
-\alpha(-c \sin (\varepsilon t)-d(\cos (\varepsilon t)-1)-w+u)=a
$$

$$
\begin{gather*}
\beta(-c \sin (\varepsilon t)-d(1+\cos (\varepsilon t))+w(T)-w+v) \\
-\beta(c \sin (\varepsilon t)+d(1+\cos (\varepsilon t))-w(T)+w+v)=b
\end{gather*}
$$

and

$$
\begin{aligned}
& x_{n}(t)=c_{n} \sin (\varepsilon t)+d_{n}(\cos (\varepsilon t)-1)+w_{n}(t) \\
& x(t)=c \sin (\varepsilon t)+d(\cos (\varepsilon t)-1)+w(t)
\end{aligned}
$$

for $t \in J$ and $n \in \mathbb{N}$ where

$$
\begin{aligned}
& w_{n}(t)=(1 / \varepsilon) \int_{0}^{t} z_{n}(s) \sin (\varepsilon(t-s)) d s, \\
& w(t)=(1 / \varepsilon) \int_{0}^{t} z(s) \sin (\varepsilon(t-s)) d s, \quad t \in J, n \in \mathbb{N}
\end{aligned}
$$

and

$$
\lambda_{n}=\varepsilon^{2} d_{n} / k, \quad \lambda=\varepsilon^{2} d / k, \quad n \in \mathbb{N}
$$

Evidently, $\lim _{n \rightarrow \infty} w_{n}=w$ in \mathbf{Y}_{2} and $\left\{c_{n}\right\},\left\{d_{n}\right\}$ are bounded sequences since $\operatorname{Im} \alpha=\mathbb{R}=\operatorname{Im} \beta$ and $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{w_{n}\right\}$ are bounded in \mathbb{R} and \mathbf{X}, respectively. Assume, on the contrary, that for example $\left\{c_{n}\right\}$ is not convergent
(the convergence of $\left\{d_{n}\right\}$ can be proved similarly). Then there exist convergent subsequences $\left\{c_{k_{n}}\right\},\left\{c_{l_{n}}\right\}, \lim _{n \rightarrow \infty} c_{k_{n}}=c^{*}, \lim _{n \rightarrow \infty} c_{l_{n}}=\tilde{c}, c^{*} \neq \tilde{c}$. Without loss of generality we can assume that $\left\{d_{k_{n}}\right\},\left\{d_{l_{n}}\right\}$ are convergent, $\lim _{n \rightarrow \infty} d_{k_{n}}=d^{*}, \lim _{n \rightarrow \infty} d_{l_{n}}=\tilde{d}$, where d^{*} equals \tilde{d} or not. Taking the limits in (21^{\prime}), ($21^{\prime \prime}$) as $k_{n} \rightarrow \infty$ and $l_{n} \rightarrow \infty$ we obtain

$$
\begin{gathered}
\alpha\left(c^{*} \sin (\varepsilon t)+d^{*}(\cos (\varepsilon t)-1)+w+u\right) \\
-\alpha\left(-c^{*} \sin (\varepsilon t)-d^{*}(\cos (\varepsilon t)-1)-w+u\right)=a \\
\beta\left(-c^{*} \sin (\varepsilon t)-d^{*}(1+\cos (\varepsilon t))+w(T)-w+v\right) \\
-\beta\left(c^{*} \sin (\varepsilon t)+d^{*}(1+\cos (\varepsilon t))-w(T)+w+v\right)=b,
\end{gathered}
$$

and

$$
\begin{gathered}
\alpha(\tilde{c} \sin (\varepsilon t)+\tilde{d}(\cos (\varepsilon t)-1)+w+u) \\
-\alpha(-\tilde{c} \sin (\varepsilon t)-\tilde{d}(\cos (\varepsilon t)-1)-w+u)=a \\
\beta(-\tilde{c} \sin (\varepsilon t)-\tilde{d}(1+\cos (\varepsilon t))+w(T)-w+v) \\
-\beta(\tilde{c} \sin (\varepsilon t)+\tilde{d}(1+\cos (\varepsilon t))-w(T)+w+v)=b
\end{gathered}
$$

respectively. Hence $c^{*}=\tilde{c}, d^{*}=\tilde{d}$ by Lemma 2 (with $u_{1}=w+u, u_{2}=$ $\left.-w+u, v_{1}=w(T)-w+v, v_{2}=-w(T)+w+v\right)$, a contradiction. Let $\lim _{n \rightarrow \infty} c_{n}=c_{0}, \lim _{n \rightarrow \infty} d_{n}=d_{0}$. Taking the limits in (21'), (21") as $n \rightarrow \infty$ we see that (22'), (22") hold with $c=c_{0}, d=d_{0}$ and consequently $c=c_{0}, d=$ d_{0} by Lemma 2. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} x_{n}^{(i)}(t) & =\lim _{n \rightarrow \infty}\left(c_{n} \sin (\varepsilon t)+d_{n}(\cos (\varepsilon t)-1)+w_{n}(t)\right)^{(i)} \\
& =(c \sin (\varepsilon t)+d(\cos (\varepsilon t)-1)+w(t))^{(i)}
\end{aligned}
$$

uniformly on $J(i=0,1,2)$ and $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda$; hence $\lim _{n \rightarrow \infty} U^{-1}\left(z_{n}, a_{n}, b_{n}\right)=$ $U^{-1}(z, a, b)$ and consequently U^{-1} is a continuous operator.

Applying U^{-1} we can rewrite (19) as

$$
\begin{align*}
& (x, \lambda)=U^{-1}(c(H j(x, \lambda)+V j(x, \lambda))+2(1-c) V j(x, \lambda)), \tag{c}\\
& \quad c \in[0,1]
\end{align*}
$$

where $j: \mathbf{Y}_{01} \times \mathbb{R} \rightarrow \mathbf{Y}_{02} \times \mathbb{R}$ is the natural embedding, which is completely continuous by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem. Set

$$
\begin{aligned}
\Omega= & \left\{(x, \lambda) ;(x, \lambda) \in \mathbf{Y}_{02} \times \mathbb{R},\|x\|_{J}<K,\left\|x^{\prime}\right\|_{J}<M,\right. \\
& \left.\left\|x^{\prime \prime}\right\|_{J}<w_{1}(M, M+2 m)+(3 M / 2)(\pi / T)^{2},|\lambda|<\Lambda\right\} .
\end{aligned}
$$

Then Ω is a bounded open convex and symmetric with respect to $0 \in \Omega$ subset of $\mathbf{Y}_{02} \times \mathbb{R}, U^{-1}(H j+V j)$ is a compact operator on $\bar{\Omega}$ and $U^{-1}(2 V j)$ is a completly continuous operator on $\mathbf{Y}_{02} \times \mathbb{R}$. To prove that BVP (8), (9) with $h=h^{*}$ has a solution (x, λ_{0}) satisfying (14) it is sufficient to show that $U^{-1}(H j+V j)$ has a fixed point in $\bar{\Omega}$, that is $\left(23_{1}\right)$ has a solution in $\bar{\Omega}$. If $U^{-1}(H j+V j)$ has a fixed point on $\partial \Omega$, our theorem is proved. Assume $\left(U^{-1}(H j+V j)\right)(x, \lambda) \neq(x, \lambda)$ for all $(x, \lambda) \in \partial \Omega$. Define $W:[0,1] \times \bar{\Omega} \rightarrow$ $\mathbf{Y}_{02} \times \mathbb{R}$ by $W(c, x, \lambda)=U^{-1}(c(H j(x, \lambda)+V j(x, \lambda))+2(1-c) V j(x, \lambda))$. W is a compact operator and (cf. (17)) $W(c, x, \lambda) \neq(x, \lambda)$ for (x, λ) \in $\partial \Omega$ and $c \in[0,1]$; hence (cf. e.g. [2]) $D\left(I-U^{-1}(H j+V j), \Omega, 0\right)=$ $D\left(I-U^{-1}(2 V j), \Omega, 0\right)$, where " D " denotes the Leray-Schauder degree. Since U^{-1} is odd and $V j$ is linear, $U^{-1}(2 V j)$ is odd and consequently $D(I-$ $\left.U^{-1}(2 V j), \Omega, 0\right) \neq 0$ by the Borsuk theorem (see e.g. [2, Theorem 8.3, p. $58]$). Thus there exists a solution $\left(x, \lambda_{0}\right) \in \bar{\Omega}$ of $\left(23_{1}\right)$ and since $\left\|x_{t}^{\prime}\right\|_{[-r, 0]} \leq$ $\left\|x^{\prime}\right\|_{J}+\|\chi-\chi(0)\|_{[-r, 0]} \leq M+2 m$ for $t \in J$ we see that

$$
h^{*}\left(t, x(t), x_{t}, x^{\prime}(t), x_{t}^{\prime}, \lambda_{0}\right)=h\left(t, x(t), x_{t}, x^{\prime}(t), x_{t}^{\prime}, \lambda_{0}\right)
$$

on J. This completes the proof.
Remark 3. Let $\varphi \in C_{r}$ and $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ be the unique solution of system (7) with $a=\varphi(0), A, B \in \mathbb{R}$ (see Lemma 3). Then the function

$$
\cdot x(t)= \begin{cases}\varphi(t) & \text { for } t \in[-r, 0] \\ \varphi(0)+x_{0} \sin (\pi t / T)+y_{0} t & \text { for } t \in(0, T]\end{cases}
$$

satisfies boundary conditions $x_{0}=\varphi, \alpha\left(\left.x\right|_{J}\right)=A, \beta\left(x(T)-\left.x\right|_{J}\right)=B$.
Theorem 2. Assume that f satisfies the following assumptions:
$\left(\mathrm{H}_{1}\right)$ (Sign conditions): For each constant $E>0$ there exist constants $K>0$ and $\Lambda>0$ such that
$f(t, x-E, \psi, y, \varrho, \Lambda) \geq-E$
for $(t, x, \psi, y, \varrho) \in J \times[0, K+2 E] \times \mathcal{S}_{K+E} \times[-E, E] \times C_{r}$,
$f(t, x+E, \psi, y, \varrho,-\Lambda) \leq E$
for $(t, x, \psi, y, \varrho) \in J \times[-K-2 E, 0] \times \mathcal{S}_{K+E} \times[-E, E] \times C_{r}$,
$f(t, x, \psi, y, \varrho, \lambda) \geq-E$
for $(t, x, \psi, y, \varrho, \lambda) \in J \times[K-E, K+E] \times \mathcal{S}_{K+E} \times[-E, E] \times C_{r}$ $\times[-\Lambda, \Lambda]$,
$f(t, x, \psi, y, \varrho, \lambda) \geq E$
for $(t, x, \psi, y, \varrho, \lambda) \in J \times[-K-E,-K+E] \times \mathcal{S}_{K+E} \times[-E, E]$ $\times C_{\tau} \times[-\Lambda, \Lambda] ;$
$\left(\mathrm{H}_{2}\right)$ (Bernstein-Nagumo growth condition): A nondecreasing function $w(\cdot, \mathcal{A}):[0, \infty) \rightarrow(0, \infty)$ exists to any bounded subset \mathcal{A} of $\mathbb{R} \times$ $C_{r} \times \mathbb{R}$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{s d s}{w(s, \mathcal{A})}=\infty \tag{24}
\end{equation*}
$$

and
(25) $|f(t, x, \psi, y, \varrho, \lambda)| \leq w(|y|, \mathcal{A}) \quad$ for $(t, x, \psi, \lambda) \in J \times \mathcal{A},(y, \varrho) \in \mathbb{R} \times C_{r}$.

Then BVP (1), (2) has at least one solution for each $\varphi, \chi \in C_{r}$ and $A, B \in \mathbb{R}$.
Proof. Let $\varphi, \chi \in C_{r}, A, B \in \mathbb{R}$ and $p \in C^{0}([-r, T]) \cap C^{2}(J)$ satisfy boundary conditions $p_{0}=\varphi, \alpha\left(\left.p\right|_{J}\right)=A, \beta\left(p(T)-\left.p\right|_{J}\right)=B$ (see Remark 3). Set $E_{1}=\max \left\{\|p\|_{[-r, T]},\left\|p^{\prime}\right\|_{J},\left\|p^{\prime \prime}\right\|_{J}\right\}$ and

$$
h(t, x, \psi, y, \varrho, \lambda)=f\left(t, x+p(t), \psi+p_{t}, y+p^{\prime}(t), \varrho+z_{t}, \lambda\right)-p^{\prime \prime}(t)
$$

for $(t, x, \psi, y, \varrho, \lambda) \in J \times \mathbb{R} \times C_{r} \times \mathbb{R} \times C_{r} \times \mathbb{R}$ where

$$
z_{t}(s)= \begin{cases}p^{\prime}(0) & \text { for } t+s<0 \\ p^{\prime}(t+s) & \text { for } t+s \geq 0\end{cases}
$$

We see that $\left(x+\dot{p}, \lambda_{0}\right)$ is a solution of BVP (1), (2) if and only if $\left(x, \lambda_{0}\right)$ is a solution of BVP (8), (9) with $u=\left.p\right|_{J}$, and $v=p(T)=\left.p\right|_{J}$. Thus to prove our theorem it is sufficient to show that BVP (8), (9) has a solution which occurs if h satisfies the assumptions of Theorem 1 .

Let $K>0, \Lambda>0$ be constants corresponding to $E=E_{1}$ in assumption $\left(\mathrm{H}_{1}\right)$. Then

$$
\begin{aligned}
h(t, x, \psi, 0, \varrho, \Lambda) & =f\left(t, x+p(t), \psi+p_{t}, p^{\prime}(t), \varrho+z_{t}, \Lambda\right)-p^{\prime \prime}(t) \\
& \geq E_{1}-p^{\prime \prime}(t) \geq 0
\end{aligned}
$$

for $(t, x, \psi, \varrho) \in J \times[0, K] \times \mathcal{S}_{K} \times C_{r}$,

$$
\begin{aligned}
h(t, x, \psi, 0, \varrho,-\Lambda) & =f\left(t, x+p(t), \psi+p_{t}, p^{\prime}(t), \varrho+z_{t},-\Lambda\right)-p^{\prime \prime}(t) \\
& \leq-E_{1}-p^{\prime \prime}(t) \leq 0
\end{aligned}
$$

for $(t, x, \psi, \varrho) \in J \times[-K, 0] \times \mathcal{S}_{K} \times C_{r}$, and
$h(t, K, \psi, 0, \varrho, \lambda)=f\left(t, K+p(t), \psi+p_{t}, p^{\prime}(t), \varrho+z_{t}, \lambda\right)-p^{\prime \prime}(t) \geq E_{1}-p^{\prime \prime}(t) \geq 0$

$$
\begin{aligned}
h(t,-K, \psi, 0, \varrho, \lambda) & =f\left(t,-K+p(t), \psi+p_{t}, p^{\prime}(t), \varrho+z_{t}, \lambda\right)-p^{\prime \prime}(t) \\
& \leq-E_{1}-p^{\prime \prime}(t) \leq 0
\end{aligned}
$$

for $(t, \psi, \varrho, \lambda) \in J \times \mathcal{S}_{K} \times C_{r} \times[-\Lambda, \Lambda]$.
Set $\mathcal{A}=\left[-K-E_{1}, K+E_{1}\right] \times \mathcal{S}_{K+E_{1}} \times[-\Lambda, \Lambda]$. By $\left(\mathrm{H}_{2}\right)$, a nondecreasing function $w(\cdot, \mathcal{A}):[0, \infty) \rightarrow(0, \infty)$ exists such that (24) and (25) hold. Then

$$
\begin{aligned}
\mid h(t, x, \psi, y, \varrho, \lambda) & =f\left(t, x+p(t), \psi+p_{t}, y+p^{\prime}(t), \varrho+z_{t}, \lambda\right)-p^{\prime \prime}(t) \mid \\
& \leq w\left(\left|y+p^{\prime}(t)\right|, \mathcal{A}\right)+E_{1} \leq w\left(|y|+E_{1}, \mathcal{A}\right)+E_{1}
\end{aligned}
$$

for $(t, x, \psi, \varrho, \lambda) \in J \times[-K, K] \times \mathcal{S}_{K} \times C_{r} \times[-\Lambda, \Lambda]$ and $y \in \mathbb{R}$. Since the function $w_{1}(s)=w\left(s+E_{1}, \mathcal{A}\right)+E_{1}$ is positive nondecreasing on $[0, \infty)$ and (cf. (24))

$$
\int_{0}^{M} \frac{s d s}{w_{1}(s)+(3 K / 2)(\pi / T)^{2}}=\int_{0}^{M} \frac{s d s}{w\left(s+E_{1}, \mathcal{A}\right)+E_{1}+(3 K / 2)(\pi / T)^{2}}>2 K
$$

for a positive constant M, the assumptions of Theorem 1 are satisfied. This completes the proof.

Example 3. Consider the functional differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=a(t)+b(t) x^{3}(t)+c(t) x(t-r)+d(t) x^{\prime}(t)+(1+|\sin t|) \lambda \tag{25}
\end{equation*}
$$

depending on the parameter λ together with boundary conditions (2). Here $a, b, c, d \in C^{0}(J), b(t)>0$ on J. Equation (25) is the special case of (1) with $f(t, x, \psi, y, \varrho, \lambda)=a(t)+b(t) x^{3}+c(t) \psi(-r)+d(t) y+(1+|\sin t|) \lambda$ and satisfies the assumptions of Theorem 2. Indeed, let $b=\min \{b(t) ; t \in J\}(>0)$ and fix $E>0$. Then

$$
\begin{aligned}
& K=\max \left\{\frac{1}{3}+\left(\frac{1}{27}+\frac{S}{2}+\left(\frac{S^{2}}{4}+\frac{S}{27}\right)^{\frac{1}{2}}\right)^{\frac{1}{3}}+\left(\frac{1}{27}+\frac{S}{2}-\left(\frac{S^{2}}{4}+\frac{S}{27}\right)^{\frac{1}{2}}\right)^{\frac{1}{3}}\right. \\
&\left.\frac{24 C}{b}, 2 E\right\}
\end{aligned}
$$

and $\Lambda=Q+K C$ are constants corresponding to E in (H_{1}) where $C=$ $\|c\|_{J}, S=(8 / b)\left(3\|a\|_{J}+3 E\left(C+\|d\|_{J}+1\right)+2 E^{3}\|b\|_{J}\right), Q=\|a\|_{J}+E(C+$ $\left.\|d\|_{J}+1\right)+E^{3}\|b\|_{J}$ and $w(s, \mathcal{A})=H s+P$ satisfies assumption $\left(H_{2}\right)$ for suitable positive constants $P=P(\mathcal{A}), H=H(\mathcal{A})$. Hence, there exists at least one solution of BVP (25), (2) for each $\varphi, \chi \in C_{r}$ and $A, B \in \mathbb{R}$.

References

[1] F. M. Arscott, Two-parameter eigenvalue problems in differential equations, Proc. London Math. Soc. (3), 14, 1964, 459-470.
[2] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin Heidelberg, 1985.
[3] M. Greguş, F. Neuman and F. M. Arscott, Three-point boundary value problem in differential equations, J. London Math. Soc. (2), 3, 1971, 429-436.
[4] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
[5] A. Haščák, Disconjugacy and multipoint boundary value problems for linear differential equations with delay, Czech. Math. J. 39 (114), 1989, 70-77.
[6] A. Haščák, Tests for disconjugacy and strict disconjugacy of linear differential equations with delays, Czech Math. J., 39 (114), 1989, 225-231.
[7] A. Haščák, On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay, Archivum Math. (Brno), 26, 1990, 207-214.
[8] S. Stanèk, Three-point boundary value problem of retarded functional differential equation of the second order with parameter, Acta UP, Fac. rer. nat. 97, Math. XXIX, 1990, 107-121.
[9] S. Stanĕk, Multi-point boundary value problems for a class of functional differential equations with parameter, Math. Slovaca, 42, No.1, 1992, 85-96.
[10] S. Staněk, Boundary value problems for one-parameter second-order differential equations, Ann. Math. Silesianae 7, Katowice 1993, 89-98.
[11] S. Staněk, On a class of functional boundary value problems for second-order functional differential equations with parameter, Czech. Math. J. 43 (118), 1993, 339348.
[12] S. Staněk, Leray-Schauder degree method in functional boundary value problems depending on the parameter, Math. Nach. 164, 1993, 333-344.
[13] S. Staněk, On certain three-point regular boundary value problems for nonlinear second-order differential equations depending on the parameter, Acta Univ. Palacki. Ołomuc., Fac. rer. mat., Math. 34, 1995, 155-166.
[14] S. Staněk, On a class of functional boundary value problems for the equation $x^{\prime \prime}=$ $f\left(t, x, x^{\prime}, x^{\prime \prime}, \lambda\right)$, Ann. Polon. Math. 59, 1994, 225-237.

Department of Mathematical Analysis
Faculty of Science, Palacký University
Tomkova 40, 77900 Olomouc
Czech Republic

