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Prace Naukowe Uniwersytetu Slqskiego nr 1523

STABILITY OF A SYSTEM OF GENERALIZED
TRIGONOMETRIC EQUATIONS

IRENA FIDYTEK

Abstract. Addition formulas for generalized trigonometric functions corre-
sponding to a given symmetric bounded and convex planar set containing
the origin as an inner point are derived. Connections with the theory of
characters on (semi) groups are considered. Hyers-Ulam stability of a su-
itable system of functional equations is investigated. It is also shown that
superstability phenomenon fails to hold for that system.

Let S be the boundary of a planar convex bounded set F, symmetric with
respect to zero and such that 0 € Int F. By Minkowski Theorem there exists
a norm in R? such that § is the unit sphere corresponding to this norm. We
denote that norm by || - ||]. We define "new” trigonometric functions Cos
and Sin in a way analogous to that used to define the usual functions cos
and sin with the aid of the unit circle. N a.mely, we proceed as follows: since
arbitrary half-line having the beginning in zero cuts the sphere 5 in exactly
one point p, the first and second coordinate of p will be called the Cosinus
and Sinus of the argument = of the point p, respectively. Now, we can find
addition formulas for functions Cosinus and Sinus, which coincide with the
well-known formulas in the case where § is the unit circle at the Euclidean

plane.
In the sequel, we denote by |-| the usual Euclidean norm in R2. Obviously,
both || - || and | - | norms are understood as norms in the linear space C of

all complex numbers over the field R of reals. Moreover, (7)) will stand for
the multiplicative group {z € C: z = 1}.

By a character on a groupoid (X, +) we mean any homomorphism between
X and T.

AMS (1991) subject classification: 39B62, 39B72.
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1. Let (X,+) be a grou‘poid with zero. In what follows, at first we shall
consider a pair of real-valued functions f, g defined on X in place of the
generalized Cos and Sin functions.

THEOREM 1. Suppose that functions f,g : X = R do not vanish simul-
taneously and m : X — C is a function defined by the formula

(1) m(z) = f(z) + ig(z)

for all z € X. Then the following conditions are equivalent:

(I)  m(z) € S and arg m(z + y) = arg m(z)+ arg m(y) for all z,y € X,
(1 m(z) € S for all z € X and f,g satisfy the following system of
functional equations:

Im (2 + y)[Re(m(z)m(y)) _ Im(z+y)|(f(2)f(¥) - 9(=)g(v))

e+ = @) im) [m(@)[[m(y)]
_ Im(z + y)lim(m(z)m(y))  |m(z+ y)|(f(z)9(y) + f(v)9(z))
= T @ im{a)llm()]

forall z,y € X;
(1) the pair (f, g) yields a solution to the system

_ Re(m(z)m(y))
fe+9) = Tmm)
_Im (m(z)m(y))
9@ +9) = TmmE)l

for all z,y € X.

PRrOOF. First we prove that condition (I) implies (1I). From (1) it follows
that

m(z + y) =|m(z + y)| exp(iargm(z + y)) =

|m(z + y)| exp(i arg m(z)) exp(i argm(y)) =
m(z) m(y)
|m(z)| |m(y)]

for all 2,y € X. Since f(z +y) = Re m(z +y) and g(z + y) = Im m(z + y)
for all z,y € X, we get condition (II).

Now assume that f, g satisfy condition (II). Since m(z) € S for all = €X ,

Im(z + y)|



we have ||m(z)|| = 1 for all z € X. System (1) implies that

L=|lm(z + y)ll = I(f(z + )9+ )l =
“(Im(fv +y)|Re(m(z)m(y)) |m(z+y)|lm (m(x)m(y))) ” _

@ m@ ' @)
M e(m)m m{(mix)m =
At UL Rern(a)m(), s (eI

ImEz+ )l .
|’m(:v)||m(y)|” (z)m(y)ll

for all z,y € X. Hence

mE+y)l _ 1
@m)] ~ TmE@m@l

for all z,y € X. Therefore f, g satisfy (III).
To prove implication (III) = (1), note that

lm(z + )l =(f(= + ), 9(z + W)l =
“ (Re(m(a: )ym(y)) Im (m(z)m(y) ) ”
||m($)m(y)|| lim(z)m(y)]l

——um(m)m(y)u (Re(m(z)m(y)), I (m(z)m())l| =

1

for all x,y € X. Putting y = 0 we get ||m(z)|| = 1 for all z € X, whence
m(z) € S for all z € X. Moreover, system (III) implies that

1
= +9) = e ™)
for ali :cv,yle X. Hence

argm(z +y) = arg(m(z)m(y)) = argm(z) + argm(y)

forall z,y € X.
This completes the proof. O

THEOREM 2. Suppose that functions f,g : X — R do not vanish si-
multaneously ard m : X — C is a function defined by formula (1). Then

e
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functions f, g satisfy system (I1I) on X if and only if there exists a character
h: X — T such that

__ Re l(z)

_ Im A(z)
@I

(2) = o

® /() (@)

forallz € X.

PRrooF. Let f,g satisfy (III). By Theorem 1 we infer that f,g satisfy
condition (1I) of Theorem 1.

Let i : X — T be a function defined by the formula

(3) hz) = ﬁ

for all z € X, where m : X — C is the function defined by formula (1.
From system (11) it follows that h is a character on X. Moreover m(z) € S
for all z € X and m = |m|h. Therefore

1= [|m(z)|| = lm(z) b (z)l| = [m(z)|||a(z)]

for all z € X, whence

i
Im(z)| =‘ @
for all z € X. Consequently
)
)= @)
for all z € X and, therefore,
Re h(z) Im h(z)
T) = =", )= —-———r—7"-
TO=Toen %= Tl

for all z € X.
Now, assume that h is a character on X and f, g satisfy condition (2).
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Let m : X — C be defined by formula (1). Then

m(z)m(y) =(f(z)g9(y) - 9()9(v)) + i(f(2)9(y) + F(¥)9(2)) =
Re h(z)Re h(y) — Im h(z)Im h(y)

@) R
iRe h(z)Im h(y) + Iin h(z)Re h(y) -

R ()l 1R ()]
Re h(z + y) +i Im h(z + y)
@ TR+ TR TR
|2(z + v)]| (Re h(z +y) z,lm h(:v+y)) _
la(@)I[ 1)\ llA(z + )l lla(z + )l
lA(z + y)l|

M@ Ty @ Ty il +u) =
bz +9)l
@RI

for all z,y € X. Moreover

@l =@ 0Dl = | (oo Tt )| =
Tl =1

II’( z)|

for all z € X, which implies that

Iz +y)ll k(= + )l

Im (@)l = e ™+ = heEr e

for all z,y € X. Hence

m(z)m(y)
lm(z)m(y)ll

for all z,y € X and, consequently, f, g satisfy system (III).
This finishes the proof. O

m(z +y) =

Observe that in the case where X is the additive group of all real numbers
and f = Cos, g = Sin, then f,g do not vanish simultaneously and satisfy
condition (I) of Theorem 1. In fact, m(z) = Cosz + ¢ Sinz, =z € S and
argm(z) = {x + 2kr : k € Z} for all z € X, where Z stands for the set
of all integers. Hence argm(z + y) = argm(z) + argm(y) for all z,y € X.
Consequently, Cos and Sin satisfy systems (II) and (III). Moreover, if S =T
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then || -]| = | -|, Cos and Sin are the usual cos and sin functions, and system
(111) reduces to the usual system of trigonometric equations. Therefore, in
the sequel, real functions f, g defined on a groupid X with zero and satisfying
system (II1) will be called the generalized sine and-cosine functions.

For example, we can consider the curve S = {(a,b) € R?: o™ 4 b" =1},
where n is an even positive integer. Then |[(a,b)]| = Va" + b"; we have
considered that case in [1].

2. In this section we shall consider the stability of system (III) of func-
tional equations in the sense of Hyers and Ulam.
In what follows, A, u will denote two positive real numbers such that

(4) Alpl < llpll < pipl

for all p € R2. Such numbers do exist since, obviously, the norms || - || and
| - | are equivalent.

Let € > 0 be arbitrarily ﬁxed Suppose that functions f,g : X — R do
not vanish simultaneously and m : X — C is the function defined by formula
(1). We shall consider the following system of functional inequalities:

_ Re (m(z)m(y))
() TE+9) = Tmml | <
e y(a:+ y) 3 Im (m(z)m(y)) <e
llm(z)m(y)]|

for all z,y € X.

LEMMA 1. If functions f,g9 : X — R do not vanish simultaneously and
satisfy system (I1I), of functional inequalities and h : X — T is the function
defined by formula (3), then

(5) h(z +y) ~ (z)h(y)] < 2v2ep
for all z,y € X.

Proor. System (IlI). implies that

lim(z)m(y)lim(z + y) - m(z)m(y)| =
(lim(z)m@)llf ( + y) — Re (m(z)m(y))|"+
lim(z)m()llg(z + y) ~ Im (m(z)m(y))[*)* <
@lim(z)m(y)l*e?)? = Vael|m(z)m(y)l]
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for all z,y € X. Thus, on account of condition (4), we get

mz+y)  mlz) m)
k(= +9)=h@AO = | Ll ~ Tn@)] )] S
mezty) _ ImEm@linG+y)|,
mEt ] m@)m)]
ImE@m@)lm+y) _ mEm) |
(@) m@)] Tm(@)[m)]
im(@)llm(w)] = m(z + y)]lm(z)m()]

im(z+9)l fm(z & ) m(@) Im(w)] *
VElm@m@) _ lin@mn@ln +3) - nEn],
@) m)] = im(@)[Im ()]
VEem(@m)l _ 2v3lm(z)my)]
m@ImE) < m@lmE] S 2V
for all z,y € X. (]

LEMMA 2. Let H,, H; be two characters on X. If
|Hy(z) = Ha(z)] < V3
for all # € X, then Hy = H,.

PROOF. Let r : X — T be a function defined by the formula:

r(z) = ————H2 (2)

- H 1 (:L')
for all z € X. Then r is a character of X, as well. Moreover

Hy(z) ll _ |Ha(z) — Hi(2)|
Hy(z) |Hy ()]

Ir(z) - 1] =

= |Hy(z) - Hi(z)| < V3
for all z € X. On the other hand
|r(z) - 1|2 = 2 — 2cos Arg r(z)

for all z € X. In this case 2 -2 cos Arg r(z) < 3 for all z € X and therefore
cos Arg r(z) > —3 for all z € X. Hence

2 2
- Arg r(z) € <,—§w’ §7r)
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for all z € X.
Assume, that there exists an z9 € X such that Arg r(ze) # 0. If
Arg r(zo) > 0, then there exists a positive integer k such that

1 2 12
Arg f‘(.’to) € <’k+—1§ﬂ’, Egﬂ')
Since r((k + 1)zo) = (r(zo))*t!, we have

(k + 1)Arg r(zo) € argr((k+1)zo) C (—;ﬂ‘, ;—ﬂ') + 27Z.

On the other hand one has
2 k+12 2 4
(k4 1)Arg r(zo) € <§1r, _k_:iﬂ) C <§7r, gﬂ'),

which is a contradiction.
Analogously, the assumption Arg r(zo) < 0 leads to a contradiction.
Hence Arg r(z) = 0 for all z € X and therefore r(z) = 1 for all z € X.
Consequently Hy = H; and the proof has been completed. O

REMARK 1. If Hi,H; : X — T are two characters such that |H,(z) —
Hy(z)| < /3 +eforall z € X, where e > 0, then Hy, H, may happen to be
different as can be seen from the following

EXAMPLE 1. Assume that (X,+) = Z3. Put Hy = 1, Hy(0) = 1,

H,(1) = exp(im), H,(2) = exp(—ifn). Then Hy, H, are characters and .
|H1(z) ~ Ha(z)| < V3 for all « € X; clearly, Hy # H,.

In the sequel we shall assume that (X, +) is an Abelian group.

LEMMA 3. Let ¢ € (0,v/2) be arbitrarily fixed. If a function k: X — T
satisfies inequality:

(6) . k(e +y) — k(x)k(y)| < ¢
for all z,y € X, then there exists a pair of functions H,r : X — T such that

(7) k(z) = H(z)r(z) forall ze€ X;

(8) : H is a character of X;
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o M@ e<— (1 _ 52.) (1 _ %)> c(-L1)

for every z € X.

Moreover, if € € (0,1), then such a pair is unique and Arg r(z) € (-3, 3)
forallz € X.

PROOF. Assumption (6) implies that

& >lk(z +) ~ K@)k =
(10) (k(z + ) — k(z)k(y) Kz + 9) - K@) k@) =
2 - 2Re (k(z + y)k(z) F(¥))

for all z,y € X.
Let t : X — R be a function such that

t(z) € argk(x)

for all 2 € X. Then
k(z) = exp(it())

for all z € X whence

Re (k(z + y)k(z) k(y)) =Re exp(i(t(z +y) — t(z) — t(y))) -
cos(t(z + y) — t(z) — t(y))
for all z,y € X. This jo‘intly with condition (10) implies that
€2 > 2 —2cos(t(z +y) — t(z) — t(y))

for all z,y € X. Consequently
e

(11) cos(t(z +y) —t(z) —t(y)) > 1~ 3

e?
6= 1-—1].
arccos( 2)

Condition (11) implies that

for all z,y € X.
Put

(12) iz +y) - t(z) - ) € (~6,8) + 20Z
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for all z,y € X. v i
Let s: X — R be a function defined by the formula:

s(z) = té_:-)

for all z € X. Putting 5

2r
we observe that 0 < 1 < . Moreover, by (12)

n=

S(w +y) — s(z) - s(y) € Z+ (-9, 7)

for all z,y € X. By Corollary 3 in [2] it follows that there exists a function
. p: X — R such that

(13) p(z.+ y)—-p(z)-py) €Z foral z,yeX
and
(14) s(z) —p(z)| <n forall ze X.

Let ¢: X - R, H,r: X = T be functions defined by the formulas:

q(z) = s(z) - p(z)
H (z) = exp(i2mp(z))
.r(z) = exp(i2mg(z))

for all z € X. By (13) we get the equality

H(z+y) . -
T H() ~ exp(i2m(p(z + y) — p(z) — p(y))) = 1

for all z,y € X, which says that H is a character of X. However, condition
(14) implies that

2
|2mq(z)| < 2mn = § = arccos (1 - %—) < g

for all z € X. Consequently

ey e? T
Arg r(z) € <—- arccos (1 - ?) ,érccos (1 - ?)> C (_5, 5)
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forall z € X. Note that Arg r(z) € (%, ) forall ze X-, whereas ¢ € (0,1).
Since :
t(z) =2ns(z) = 27rp(:z:) +. 27rq(z)

forall z € X, we have

k(s) = exp(it(z)) = exp(i27p(2)) exp(i2nq(z)) = H (2)r(z)

forall x € X.

Assume that € € (0,1). Let Hy, Ha,ry,72 : X = T be functions such that
both pairs (Hy, ), (Hz,f‘z) satisfy conditions (7), (8) and (9). Then
Arg ri(z) € (-5, 3) for i =1,2 and for all z € X. Therefore

Arg ri(z) — Arg ra(z) € (égﬁ, %ﬂ‘)
for all z € X. Consequently »

k@) k@) [ | k@) [  n@))?
|Hy(z) - H2($)|2 = f’l(z) - @) = 1;_1(3:) | .1—» .rz(z)
[1 - exp(i(Arg r1(z) — Arg r2(2)))|* =
2 — 2cos(Arg ry(z) — Arg ro(z)) <3

for all z € X, whence

|Hy(z) - Hay(z)| < V3

for all z € X. By Lemma 2 we have H; = H, and, ‘con'sequently, ry =
r9. This finishes the proof of the uniqueness of the palr (H r) satlsfymg'
conditions (7), (8), (9) and completes the proof.- O

In the sequel, if functions f,¢g € X — R do not vanish snmultaneously _
and m : X — C is the function defined by formula (1), then functions -
fi,91: X > R, m; : X = C are defined by the formulas: :

Re (m(z)m(0))
Nlm(=z)m(0)]]

fi(z) =

(15) :
.\ _ Im (m(z)m(0))
91 = Tm@mo)]
(16) @) = Ai@) + in(e)

for all z € X. Definitions (15) and (16) lmply that -

(17) ' m@i=1
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for all z € X. Consequently m;(z) € S for all z € X and functions fi, o
are bounded.

REMARK 2. If functions f,g : X — R do not vanish simultaneously and
satisfy system (III)¢ on X, then

(18) [f(z) - filz)l <& and |g(z) - gi(a)l <¢

for all z € X, f;g are bounded and

(19) Im(@) < Ve + 5,
(20) Im(@)ll < Ve +1

for all z € X.

PROOF. Setting y = 0 in system (III), we obtain (18). In that case f,g
are bounded because so are f,g,. However (17) and (18) imply that

Im(@)] < Im(2) - 4 (2)] + I )] <
(1£E) = AEE +19@) - @) + Jlim )] < VEs + &
forall z € X. On fhe other hand

Im(2)ll < llm(2) — mi ()| + lma ()| < plm(z) = my(2)| +1 <
V2pe + 1

forall z € X.

THEOREM 3. Let (X,+) be an Abelian group and let € € (0, 7;) be
arbitrarily fixed. If functions f,g : X — R do not vanish simultaneously and
satisfy system (I11). on X, then there exists a pair of functions F,G : X —» R
not vanishing simultaneously and satisfying system of functional equations
(IlI) on X with M = F +iG on X instead of m and such that

(21) I(F (), G(2)) = (f(2), 9(@)I| < V2u(1 + 48)e

and

(22) [(F(2), G(2)) — (f(2), 9(2))] < V26(3+ 26)e
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for all z € X, where § := &. Moreover, ife < \/6(4;16(3+26)(1+32£+6))‘1,
then such a pair (F,G) is unique.
Moreover, if S =T, and € € (0,1) then

(23) [(F(z),G(2)) - (f(2),9(2))] < 3v2¢
for all z € X and the pair (F,G) is unique provided that £ < ﬁg.

PROOF. Let m: X =5 C, h: X — T be the functions defined by formulas
(1) and (3). By Lemma 1

|a(z + y) = h(z)h(y)] < 2v2pe

for all z,y € X. However Lemma 3 implies that there exist functions
H,r: X — T such that

(24) h(z) = H(z)r(z) forall z € X;

(25) H is a character of X

Arg r(z) E<— arccoé(l — 4u%e?), arccos(1 — 4u2e2)> c (—%, E)

(26) 2

forall z € X.

Let F,G: X - R, M : X — C be functions defined by the formulas:

_ Re H(z) ) = ImH (z)
(27) FO=Ta@n @ = 1w
(28) M(z) = F(z) +iG(z)

for all z € X. Obviously

for all z € X. Theorem 2 implies that F,G satisfy system (I1I) on X with
m replaced by M. From condition (24) it follows that

arg h(z) = arg H(z) + Arg r(z)
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for all z € X. This jointly with (26) implies that
|h(z) — H(z)]? =2 - 2cos Arg r(z) < 2 - 2(1 — 4p?e?) = 8u2¢?

for all z € X, whence

(30) |h(z) — H ()| < 2v2pe
for all z € X.
Let mg : X — C be a function defined by the formula:
h(z)
31 mo(z) = ———
(31) °@) = @

for all z € X. Obviously ||mo(z)|| = 1 for all z € X and, consequently,
mg(z) € S for all z € X. Moreover

- (32) argmg(z) = argh(z) = arg m(z)

for all z € X. Moreover, conditions (29), (30) and (31) imply that

mo(z)—M ()| = [-&)__ _H(z)

1E@I ~ TH )] =

I @lIk@) - Ih@)1H ()] _

ZRIIECIN.
I @)@ - 1A @I @) + I @)1H ) ~ i@l H )] _

()T TH @)1
LH @) Ih(z) ~ @)+ 1H @)1 @)] - A
16T T )]
I @)l 1h(z) - H@)|+ HIH@I| I1H @) - b)) _
T TRET )] .

o) = H@L Rl “HE) by

()

for all z € X. Putting

(33) B

e

we obtain

(34) Imo(2) — M(2)| < 2v2(1 + §)de
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for all z € X. On the other hand, conditions (29), (30), (31) and (33) imply
that

h(z) (=)
mo (=) - “ @)~ uH 2N I
LIF@IAE) - IMEIHE)]
@) TH @) <
L1 @)lik(E) ~ WH@IH @) + | IH @I E) - IM@IHE)]
@I TH @]
1@l I14() - HE@IL+ | 1H @)~ @I 1E @
@ IE@]
2h(z) — H@)l| _ 2ulh(z) - H(z)|
O R O
for all z € X. We have |
(35) | limo(z) — M(z)]| < 4v/26pe

for all z € X. ’
Let fi,41 : X = R, m; : X — C be functions defined by formulas (15)
and (16). In view of (18) we have

Im(z) = m(2)| < V2

for all z € X whence

(36) llm(z) = m1 (2)| < V2pe
for all z € X.
Now, we shall prove that
37) llm(z) — mo(2)|| < V2pe
for all z € X.
Note that the equality ||mo(z)|| =1 for all € X and (32) imply that
(38) lIm(z) — mo(2)]| = [llm(z)]| - 1
for all z € X.

Suppose that there exists a y € X such that

(39) Im(y) — mo(y)|| > V2pe.
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If |[m(y)| < 1, then conditions (36), (38) and (39) imply that

llma N < llma () = m)I| + lIm)l < V2he + 1 - ||m(y) = mo(y)l| < 1,

i.e. |lm1(y)]| < 1. However, by (17), we have ||m;(y)|| = 1, a contradiction.
Assume now that ||m(y)|| > 1; then by (36), (38) and (39) we obtain

lima (W) 2 lm(@)l = llma (v) = m(@)ll > Im(y) = mo(y)ll + 1 - vV2ue > 1,

a contradiction, again.

The assumption ||m(y)|| = 1 jointly with (38) implies that ||jm(y) —
mg (y)|| = 0 which contradicts (39).

This finishes the proof of inequality (37).

Now, from (33) and (37) it follows that

(40) |m(z) — mo(z)] < V28
for all z € X. Finally, conditions (34) and (40) imply that

[m(z) ~ M(z)| < V20e + 2v2(1 + 8)de = V26(3 + 20)e
for all z € X. Moreover, conditions (35) and (37) itflply that

Im(z) = M(@)]| < Ve + 4v/3ope = V3u(1 + 48)e

for all 2 € X. This proves that the functions F,G satisfy conditions (21)
and (22).

Let £ € (0,v6(4ué(3 + 26)(1 + %—5 + 8))~'). We shall show that there
exists exactly one pair F,G : X — R of functions satisfying system (I1I) on
X and conditions (21) and (22).

Let (Fi,G1), (F2,G?) be two pairs of real functions on X satisfying (III)
on X along with (21) and (22).

Let

M;(z) = Fj(z) +1Gj(z)

for all z € X and j = 1,2. On account of Theorem 2, there exist characters
Hy,H,; : X = T such that

() = Hi(2)
M=) = @

forall z € X, j=1,2. Then

IMj(z)]|=1 and |M;(z)|= ||H,1(a:)||
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for all z € X, j =1,2. Hence

(o) = Mi(®)
) = o)
for all z € X, j = 1,2. Moreover, by (22),
|M;(z) - m(z)] < V26(3 + 20)e
for all z € X, 7 = 1,2, and therefore,
Mi(z)  M;(z)
IMi(z)]  |My(2)]
Mi(z) m(z)
|Mi(z)]  [M(z)]
m(z) M;(z)
Mz ()] |Ma(z)]

im(z)|!

|Hi(2) - Hz(2)| =

m(z)  m(z)
[Mi(z)] | Ma(2)]
piMi(z) - m(z)],
= M@
|My(z)| = Mi(2)llp® | plMa(z) — m(z)]
| M1 ()] [|M2(=)]] | M ()|
2V26(3 + 26)pe + p* |m(z) | Ma(z) — My (2)] <
- 2V26(3 + 28)pe + ¥ |m(2)|(IM2(2) = m(2)| + |m(z) - Mi(2)]) <
2v26(3 + 28) e + 2v26(3 + 28)u’e|m(z)| =
2v/26(3 + 28)pe(1 + plm(z)])

(41)

for all z € X. Since € < 517, condition (19) implies that

1 7
1+p|m(z)|<l+u(\/§€+x)<l+§+5

for all z € X. From here and from (41) we deduce that

|Hy(2) — Hy(z)| < 2v/26(3 + 26)(1 + % +8ue < V3

for all z € X. By Lemma 2 one obtains the equality H; = H, which implies
that (Fl,Gl) = (Fz,Gz). .

Now, assume that S =T. Then ||:||=|-|aswellasuy=A =46 =1 and
£ € (0,1). By (29) and (31) one has M = H and mo = h. Hence conditions
(30) and (40) imply that

M (2) - m(e)] =|H(z) - m(&)| < [H(z) - b(z)| + I ma(z) — m(&)] <
2V2e + V2= = 3v2¢ '

7 - Aannales...
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for all z € X.

Let (F1,G)1), (F2,G?) be two pairs of real functions on X satisfying (11
on X and such that

(Fj(2), Gi(z)) = (£(2), 9(2))| < 3v2e

for all z € X, j = 1,2. By Theorem 2, there exist characters Hy, H; of X
such that H;j(z) = Fj(z) + iG;(z) for all z € X, j = 1,2. Then

|Hy(z) - Hy(z)| < 6v2¢

forallz € X. lfe < 21—\/5, then |H;(z) — Hy(z)| < V3 for all z € X. By

means of Lemma 2 we get H; = H;. Consequently (Fi,Gh) = (F,G3)
which ends the proof. o a

Now, we shall show that system (I1I) is not superstable, i.e. there exists a

solution of system (111), which deos not satisfy system (I111). This is exhibited
in the following.

EXAMPLE 2. Suppose that functions F,G : X — R do not vanish simul-
taneously and satisfy system of functional equations (III) and € > 0 is fixed.

If ¢: X = R is a function satisfying the following conditions:

(42) c(z) >0 forall ze€ X or ¢(z)<0 forall ze€ X;

(43) 0<]e(z) -1 <A forall zeX;
then the functions f, g : X — R such that:
(44) f(z) =c(z)F(z), g(z)=c(z)G(z) forall z€ X

satisfy the system of functional inequalities considered but fail to be solution
of system (IlI). Moreover

(45) |f(z) - F(z)| <e and |g(z) - G(z)| <&
for all z,y € X.

PROOF. Let m,M : X — C be functions defined by formulas (l) and
(28), respectively. From (1), (28) and (44) it follows that

(46) m(z) = c(z)M(z)



for all z € X. By Theorem 1 we get
(47) IM@)|=1"
for all z € X. Conditions (43), (46) and (47) imply that
|f(z) = F(z)| = Im(z) - M(z)] = |e(z) M (z) ~ M(z)| =
|M(z)|le(2) - 1] < —IIM(fv)lIf\e =€
~for all z € X. Analogously,
lg(z) - G(z)| <e

for all z € X which proves the validity of (45).
Now, we shall show that the functions f, g satisfy system (11I)..
Obviously, f,g do not vanish simultaneously. Since F,G satisfy system
(111), then conditions (42), (43), (44), (46) and (47) imply that

Re (m(z)m(y)) _

|[f(z+y) - lm(@)m)]| .
o\ (s _Re (c(z)e(y)M (z)M(y)) -
" @+ 9FE+9) - 0@ MEMO)
48 c(z)e(y)Re (M(z)M(y))| _
@+ 0FE+Y) - = W IME M)

le(e + y) F(z +9) - F(z +9)| = [F(@ + y)llc(@ + ) — 1] <
IM(z+9lle(e+9) 1] < 5IM (e +)lAe =<

for all z € X. Analogously,

Im (m(z)m(y))
lIm(z)m(y)li
for all z,y € X. Hence f, g satisfy system (11I),.
Finally, we shall prove that the equalltles (II1) fail to hold for every
(z,y) € X2.
Assiime the contrary, i.e. there exists a pair (u,v) € X? such that system
(I1T) holds true. From conditions (48) and (49) it follows that

|F(u+ v)jle(u+v) -1 =0 and [G(u+v)|lc(utv)—1]=0.

By‘ (43) we get F(u + v) = 0 and G(u + v) = 0 which is a contradiction
because F,G do not vanish simultaneously. '
This finishes the proof. 0O

(49)

g(z+y) - =|G(z+y)llc(z+y) -1l <e

™
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