F. Alizadeh, J.-P.A. Haeberly, and M.L. Overton, Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results, SIAM J. Optim. 8 (1998), no. 3, 746–768.
Google Scholar
D. Benterki, J.-P. Crouzeix, and B. Merikhi, A numerical implementation of an interior point method for semidefinite programming, Pesqui. Oper. 23 (2003), no. 1, 49–59.
Google Scholar
D. Benterki, J.-P. Crouzeix, and B. Merikhi, A numerical feasible interior point method for linear semidefinite programs, RAIRO Oper. Res. 41 (2007), no. 1, 49–59.
Google Scholar
J.-P. Crouzeix and B. Merikhi, A logarithm barrier method for semi-definite programming, RAIRO Oper. Res. 42 (2008), no. 2, 123–139.
Google Scholar
J.-P. Crouzeix and A. Seeger, New bounds for the extreme values of a finite sample of real numbers, J. Math. Anal. Appl. 197 (1996), no. 2, 411–426.
Google Scholar
J. Ji, F.A. Potra, and R. Sheng, On the local convergence of a predictor-corrector method for semidefinite programming, SIAM J. Optim. 10 (1999), no. 1, 195–210.
Google Scholar
B. Merikhi, Extension de Quelques Méthodes de Points Intérieurs pour la Programmation Semi-Définie, Thèse de Doctorat, Département de Mathématiques, Université Ferhat Abbas, Sétif, 2006.
Google Scholar
R.D.C. Monteiro, Primal-dual path-following algorithms for semidefinite programming, SIAM J. Optim. 7 (1997), no. 3, 663–678.
Google Scholar
Y.E. Nesterov and A.S. Nemirovskii, Optimization Over Positive Semidefinite Matrices: Mathematical Background and User’s Manual, Technical report, Central Economic & Mathematical Institute, USSR Academy of Science, Moscow, 1990.
Google Scholar
R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.
Google Scholar
K. Samia and D. Benterki, A relaxed logarithmic barrier method for semidefinite programming, RAIRO Oper. Res. 49 (2015), no. 3, 555–568.
Google Scholar
K.-C. Toh, Some new search directions for primal-dual interior point methods in semidefinite programming, SIAM J. Optim. 11 (2000), no. 1, 223–242.
Google Scholar
I. Touil, D. Benterki, and A. Yassine, A feasible primal-dual interior point method for linear semidefinite programming, J. Comput. Appl. Math. 312 (2017), 216–230.
Google Scholar
H. Wolkowicz and G.P.H. Styan, Bounds for eigenvalues using traces, Linear Algebra Appl. 29 (1980), 471–506.
Google Scholar