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ON WEAK SOLUTIONS TO PARABOLIC PROBLEM
INVOLVING THE FRACTIONAL p-LAPLACIAN

VIA YOUNG MEASURES

Ihya Talibi , Farah Balaadich,
Brahim El Boukari, Jalila El Ghordaf

Abstract. In this paper, we study the local existence of weak solutions for
parabolic problem involving the fractional p-Laplacian. Our technique is based
on the Galerkin method combined with the theory of Young measures. In
addition, an example is given to illustrate the main results.

1. Introduction

Recently, there has been a lot of interest in the systematic study of prob-
lems involving non-local operators due to their frequency in practical real-
world applications, such as finance, optimization, soft thin films, stratified
materials, and phase transitions. We refer the reader to see [32]. The elliptic
theory for linear and quasilinear nonlocal operators has seen extensive research
over the past few decades, particularly in the works of Caffarelli and collabora-
tors [4, 5, 14]. Additionally, research on nonlocal nonlinear problems has been
extensively explored in [30], we also refer to [9, 10, 11, 15, 22, 24, 25, 26, 31]
on related existence results for the problems of elliptic and parabolic type
involving non-local fractional Laplacian (p-Laplacian) operators.
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In this paper, suppose that Ω is a bounded open domain of Rn and T is
a real positive number. We deal with the following initial boundary value
problem:

(1.1)


∂u
∂t + (−∆)spu = f(x, t, u) in QT = Ω× (0, T ),

u = 0 in (Rn\Ω)× (0, T ),

u(x, 0) = u0(x) in Ω,

where 0 < s < 1 and 2 < p are real numbers, u : Ω × (0, T ) → Rm,
m ∈ {0, 1, 2, . . .} is a vector-valued function and the function f satisfies the
following hypothesis:

(H1) f : Ω× (0, T )× Rm → Rm is a Carathéodory function satisfying

|f(x, t, r)| ≤ α0

(
1 + |r|q−1

)
,

Ft(x, t, r) ≥ α1 (−1− |r|q) ,

for all (x, t, r) ∈ Ω × (0, T ) × Rm, where α0, α1 are positive constants,
F (x, t, r) =

∫ r
0
f(x, t, l)dl and Ft = d

dtF .

The fractional p-Laplacian operator (−∆)spu is defined as follows:

(−∆)spu(x, t) = P.V

∫
Rn

|u(x, t)− u(y, t)|p−2(u(x, t)− u(y, t))

|x− y|n+ps
dy, x ∈ Rn,

where P.V stands for “in the principal value sense” and is a frequently used
abbreviation. For more information on this operator, see [13].

Concerning the fractional Laplacian (p = 2), a famous model for anoma-
lous diffusion is the following equation: ∂u

∂t + (−∆)su = 0, which comes
asymptotically from basic random walk models (see [33, 34]). Also in [17],
de Pablo et al. proposed the nonlinear anomalous diffusion equation
∂u
∂t + (−∆)s(um) = 0, the fractional porous medium equation with 0 < s < 1
and m > 0. We also refer to [34] for more details on this type of equation.

On the other hand, in the case p 6= 2 and f = 0, Vázquez in [35] proved
the existence and uniqueness of strong nonnegative solutions for (1.1). If u0 ∈
L2(Ω), the existence results of energy solution were studied in [29].

When it comes to the problem (1.1), the existence results are treated in
several works, for example, the different issues of the existence and the regu-
larity of energy-weak solutions to the problem same to (1.1) were investigated
by Giacomoni et al. in [21]. In [1], the authors have studied the problem (1.1)
with f depending only on x and t and proved the existence results with suit-
able regularity if (f, u0) ∈ L1 (ΩT ) × L1(Ω) and has a nonnegative entropy
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solution if f0, u0 are nonnegative. The same author in [2] proved the asymp-
totic behavior result of entropy solutions when the right-hand side does not
depend on time.

The idea of this work, motivated by all of the results above, is to study the
existence of weak solutions to the problem (1.1) by using the Galerkin method
combined with the theory of Young measures. To the best of our knowledge,
the parabolic problem (1.1) has never been studied by the theory of Young
measure. We suggest to the readers to consult [6, 7, 19] which treat some
elliptic and parabolic systems by such a theory. In [8], the authors proved the
existence of weak solutions to the elliptic case of (1.1) employing the Young
measures theory and the Galerkin method.

This article is organized into four sections. In Section 2 we give some back-
ground information on fractional Sobolev spaces and a review of the Young
measures theory. Later, under some assumptions, we obtain the existence of
weak solutions using the Galerkin approximation and the Young measures.
The final part is devoted to illustrating the feasibility of the hypotheses with
an example.

2. Preliminaries and notations

In this section, we first recall some necessary results which will be used in
the next section. Let 1 < p <∞, s ∈ (0, 1), we define p∗s the fractional critical
exponent by:

p∗s =

{
∞ if ps ≥ n,
np/(n− ps) if ps < n.

Let Ω ⊂ Rn be an open set, QΩ = (Rn × Rn) \(CΩ × CΩ), Qτ = Ω × (0, τ)
for all τ ∈ (0, T ] and CΩ = Rn\Ω. It is clear that Ω× Ω is strictly contained
in QΩ. W is a linear space of Lebesgue measurable functions from Rn to Rm
such that the restriction to Ω of any function u in W belongs to Lp(Ω;Rm)
and ∫∫

QΩ

|u(x)− u(y)|p

|x− y|n+ps
dydx <∞.

The space W is equipped with the norm

‖u‖W = ‖u‖Lp(Ω;Rm) +

(∫∫
QΩ

|u(x)− u(y)|p

|x− y|n+ps
dydx

)1/p

.
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Let us consider the closed linear subspace

W0 = {u ∈W : u = 0 a.e. in CΩ} .

In W0, we may also use the norm

‖u‖W0 =

(∫∫
QΩ

|u(x)− u(y)|p

|x− y|n+ps
dydx

)1/p

.

It is known that (W0, ‖ · ‖W0
) is a uniformly convex reflexive Banach space

(see [36]). The following Poincare’s inequality from [12] will be used below:
there exists Cr > 0 such that

(2.1) ‖φ‖Lr(Ω,Rm) ≤ Cr‖φ‖W0
for all φ ∈W0 and r ∈ [1, p∗s].

In the sequel, let p < n
s and Ci, i = 1, 2, . . . be positive constants that vary

from line to line, and are independent of the terms involved in any limit pro-
cess. We note the following functional space Lp(0, T ;W0), which is a separable
and reflexive Banach space endowed with the norm

‖u‖Lp(0,T ;W0) =

(∫ T

0

‖u‖pW0
dt

)1/p

.

Lemma 2.1 ([20]). The space C∞0 (Ω;Rm) of infinitely differentiable func-
tions with compact support on Ω is dense in W0.

Lemma 2.2 ([18]). The following embedding W0 ↪→ Lr (Ω;Rm) is compact
for all r ∈ [1, p∗s), and continuous for all r ∈ [1, p∗s].

In the following, C0 (Rm) stands for the space of continuous functions on
Rm with compact support with regards to the ‖·‖∞-norm. The space of signed
Radon measures with finite mass is notedM (Rm). The corresponding duality
is given by

〈µ, ρ〉 =

∫
Rm

ρ(λ)dµ(λ).

Definition 2.3 ([8]). Let {zj}j≥1 be a bounded sequence in L∞ (Ω;Rm).
Then there exist a subsequence {zk} ⊂ {zj} and a Borel probability measure
µx on Rm for almost every x ∈ Ω, such that for a.e. ρ ∈ C (Rm) we have
ρ (zk) ⇀∗ ρ̄ weakly in L∞(Ω), where ρ̄(x) = 〈µx, ρ〉 =

∫
Rm ρ(λ)dµx(λ) for a.e.

x ∈ Ω.
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Lemma 2.4 ([23]). Let Ω ⊂ Rn be Lebesgue measurable (not necessarily
bounded) and zj from Ω to Rm, for j ∈ N, be a sequence of Lebesgue mea-
surable functions. Then there exist a subsequence zk and a family {µx}x∈Ω of
non-negative Radon measures on Rm, such that
(i) ‖µx‖M(Rm) :=

∫
Rm dµx(λ) ≤ 1 for almost every x ∈ Ω.

(ii) ρ (zk) ⇀∗ ρ̄ weakly in L∞(Ω) for all C0 (Rm), where ρ̄ = 〈µx, ρ〉.
(iii) If for all M > 0

(2.2) lim
N→∞

sup
k∈N
| {x ∈ Ω ∩BM (0) : |zk(x)| ≥ N} | = 0,

then ‖µx‖ = 1 for a.e. x ∈ Ω, and for any measurable Ω′ ⊂ Ω we have
ρ (zk) ⇀ ρ̄ = 〈µx, ρ〉 weakly in L1 (Ω′) for continuous function ρ provided
the sequence ρ (zk) is weakly precompact in L1 (Ω′).

3. Local existence of weak solutions

In this section, we define a weak solution to the problem (1.1) and prove
the main result (Theorem 3.2 below). We start with the following definition:

Definition 3.1. A function u ∈ Lp(0, T ;W0) is called a weak solution
of (1.1), if ∂u∂t ∈ L

2(QT ;Rm) and∫
QT

∂u

∂t
φdxdt

+

∫ T

0

∫∫
QΩ

|u(x, t)− u(y, t)|p−2(u(x, t)− u(y, t))

|x− y|n+ps
(φ(x, t)− φ(y, t))dxdydt

=

∫
QT

f(x, t, u)φdxdt,

holds for all φ ∈ C1 (0, T ;C∞0 (Ω)).

Theorem 3.2. If u0 ∈W0, 2 < q <
(2+p)p∗s−2p

p∗s
< p∗s and (H1) is satisfied,

then there exists a constant T0 > 0 such that problem (1.1) has at least one
weak solution as T < T0.

Proof. The proof is divided into three assertions.
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Assertion 1: Galerkin approximation

Similar to that in [27], we take a sequence {wj}j≥1 ⊂ C∞0 (Ω;Rm), such

that C∞0 (Ω;Rm) ⊂
⋃
k≥1 Uk

C1(Ω̄)
, where {wj}j≥1 is an orthonormal basis in

L2 (Ω;Rm) and Uk = span {w1, . . . , wk}.

Lemma 3.3. For the function u0 ∈W0, there exists a subsequence ξk ∈ Uk
such that ξk → u0 in W0 as k →∞.

Proof. Since u0 ∈ W0, we can find a sequence {vk} in C∞0 (Ω;Rm) such

that vk → u0 in W0. Since {vk} ⊂ C∞0 (Ω;Rm) ⊂
⋃
M≥1 UM

C1(Ω̄;Rm)
, there

exists a sequence
{
vik
}
⊂
⋃
M≥1 UM such that vik → vk in C1

(
Ω̄;Rm

)
as

i tends to ∞. For 1
2k
, there exists ik ≥ 1 such that

∥∥vikk − vk∥∥C1(Ω̄)
≤ 1

2k
.

Therefore ∥∥vikk − u0

∥∥
W0
≤ C1

∥∥vikk − vk∥∥C1(Ω̄)
+ ‖vk − u0‖W0

.

Hence vikk → u0 in W0 as k tends to ∞. We denote uk = vikk . Since uk ∈⋃
M≥1 UM , there exists UMk

such that uk ∈ UMk
, without loss of generality,

we assume that UM1 ⊂ UM2 asM1 ≤M2. We suppose thatM1 > 1 and define
ξk as follows: 

ξk(x) = 0, for k = 1, . . . ,M1 − 1,

ξk(x) = u1, for k = M1, . . . ,M2 − 1,

ξk(x) = u2, for k = M2, . . . ,M3 − 1,
...

...

Then {ξk} is the desired sequence such that ξk → u0 in W0 as k →∞. �

We define the function Rk : [0, T )× Rk → Rk where k is fixed:

(R(t, ς))i =

∫∫
QΩ

∣∣∣∑k
j=1 (ςj(t))j wj(x)−

∑k
j=1 (ςj(t))j wj(y)

∣∣∣p−2

|x− y|n+ps

×

(
k∑
j=1

(ςj(t))j wj(x)−
k∑
j=1

(ςj(t))j wj(y)

)
(wi(x)− wi(y)) dxdy,

for ς ∈ Rk and i = 1, . . . , k. The function R(t, ς) is continuous in t and ς.
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Now, we shall construct the approximating solutions for (1.1) as follows:

uk(x, t) =

k∑
j=1

(bj(t))j wj(x),

where unknown functions (b(t))j are determined by the following system of
ODE:

(3.1)

{
b′(t) +Rk(t, b(t)) = Sk(t, b(t)), 0 < t < T,

b(0) = ψk(0),

where

(Sk(t, b))i =

∫
Ω

f(x, t,

k∑
j=1

bjwj)widx, (ψk(0))i =

∫
Ω

ξk(x)widx,

and
ξk(x)→ u0 in W0 as k →∞ where ξk(x) ∈ Uk.

Multiplying (3.1) by b(t), we get

(3.2) b′b+Rk(t, b)b = Sk(t, b)b.

According to (H1), the following inequalities hold

Sk(t, b)b ≤ α0

∫
Ω

(∣∣∣∣ k∑
j=1

bjwj

∣∣∣∣q +

∣∣∣∣ k∑
j=1

bjwj

∣∣∣∣)dx(3.3)

≤ α0

∫
Ω

∣∣∣∣ k∑
j=1

bjwj

∣∣∣∣qdx+ α0C2

∫
Ω

∣∣∣∣ k∑
j=1

bjwj

∣∣∣∣2dx.
Since 2 < q < p∗s, using the interpolation inequality (see [3, Theorem 2.11])
and (2.1), we get

∫
Ω

∣∣∣∣ k∑
j=1

bjwj

∣∣∣∣qdx ≤ ∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥θq
L2(Ω;Rm)

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥(1−θ)q

Lp
∗
s (Ω;Rm)

(3.4)

≤ Cp∗s

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥θq
L2(Ω;Rm)

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥(1−θ)q

W0

,

where θ ∈ (0, 1) satisfies
1

q
=
θ

2
+

1− θ
p∗s

.
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We observe that

(1− θ)q =
p∗s(q − 2)

p∗s − 2
< p∗s

and

λ :=
pθq

p− (1− θ)q
=

2p(p∗s − q)
p∗s(p− q + 2)− 2p

> 2.

For any ε ∈ (0, 1), the Young inequality implies

(3.5)
∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥θq
L2(Ω;Rm)

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥(1−θ)q

W0

≤ ε
∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥p
W0

+ C(ε)

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥λ
L2(Ω;Rm)

.

Then, (3.4) is transformed into the following inequality

(3.6)
∫

Ω

∣∣∣∣ k∑
j=1

bjwj

∣∣∣∣qdx ≤ Cp∗s ε∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥p
W0

+ C(ε)

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥λ
L2(Ω;Rm)

.

Plugging inequalities (3.3), (3.4) and (3.6) into (3.2), we deduce that

1

2

d|b(t)|2

dt
+

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥p
W0

≤ Cp∗sα0ε

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥p
W0

+ α0C(ε)

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥λ
L2(Ω;Rm)

+ α0

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥2

L2(Ω;Rm)

.

By choosing ε = 1
2α0Cp∗s

, we get

1

2

d|b(t)|2

dt
+

1

2

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥p
W0

≤ α0C(ε)

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥λ
L2(Ω;Rm)

(3.7)

+ α0

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥2

L2(Ω;Rm)

.
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It follows that

d|b(t)|2

dt
≤ 2C3

(∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥λ
L2(Ω;Rm))

+

∥∥∥∥ k∑
j=1

bjwj

∥∥∥∥2

L2(Ω;Rm))

)
.

Denote z(t) = |b(t)|2, then

(3.8)
dz(t)

dt
≤ 2C3

(
z(t)

λ
2 + z(t)

)
.

Integrating (3.8) from 0 to t, and using the property

z(0) = |b(0)|2 =

∫
Ω

ξ2
k(x)dx ≤ C4,

we can conclude that

z(t) ≤ exp(2C3t)
(
C

1−λ2
4 − exp(C3(λ− 2)t)

) 2
2−λ

, as t <
ln(C

1−λ2
4 )

C3(λ− 2)
.

For 0 < T < T0 =
ln(C

1−λ
2

4 )
C3(λ−2) , we obtain that |b(t)| ≤ C(T ) ∀t ∈ [0, T ] , where

C(T ) = exp(2C3T )
(
C

1−λ2
4 − exp(C3(λ− 2)T )

) 2
2−λ

.

Put

Jk = max
(t,b)∈[0,T ]×B(b(0),2C(T ))

|Sk −Rk(t, b)| and βk = min

{
T,

2C(T )

Jk

}
,

where B(b(0), 2C(T )) is the ball of center b(0) and radius 2C(T ). By [16,
Peano theorem], we know that problem (3.1) has a C1 solution on [0, βk]. Let
b (βk) be an initial value, then we can repeat the above process and get a C1

solution on [βk, 2βk]. Without loss of generality, we assume that

T =

[
T

βk

]
βk +

(
T

βk

)
βk, 0 <

(
T

βk

)
< 1,

where
[
T
βk

]
is the integer part of T

βk
and

(
T
βk

)
is the decimal part of T

βk
. We can

divide [0, T ] into [(i− 1)βk, iβk] , i = 1, . . . , N and [Nβk, T ] where N =
[
T
βk

]
,
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then there exist C1 solution bik(t) in [(i− 1)βk, iβk] , i = 1, . . . , N and bN+1
k (t)

in [Nβk, T ]. Therefore, we get a solution bk(t) ∈ C1([0, T ]) defined by

bk(t) =



b1k(t), if t ∈ [0, βk] ,

b2k(t), if t ∈ (βk, 2βk] ,
...
bNk (t), if t ∈ ((N − 1)βk, Nβk] ,

bN+1
k (t), if t ∈ (Nβk, T ] .

As a result, we get the desired Galerkin approximation solution.

Assertion 2: A priori estimates

By (3.1), we have

(3.9)
∫

Ω

∂uk
∂t

widx

+

∫∫
QΩ

|uk(x, t)− uk(y, t)|p−2(uk(x, t)− uk(y, t))

|x− y|n+ps
(wi(x)− wi(y))dxdy

=

∫
Ω

f (x, t, uk)widx,

where 1 ≤ i ≤ k and t ∈ [0, T ] (T < T0).
Multiplying (3.9) by (b(t))i

(
resp. by d

dt(b(t))i
)
and summing with respect

to i from 1 to k, we arrive at (integrating with respect to t from 0 to τ
(τ ∈ (0, T ]) )∫

Qτ

∂uk
∂t

ukdxdt+

∫ τ

0

‖uk(x, t)‖pW0
dt =

∫
Qτ

f (x, t, uk)ukdxdt,

(3.10)
∫

Ω

∣∣∣∣∂uk∂t
∣∣∣∣2 dx

+

∫∫
QΩ

|uk(x, t)− uk(y, t)|p−2(uk(x, t)− uk(y, t))

|x− y|n+ps

(∂uk(x, t)

∂t
− ∂uk(y, t)

∂t

)
dxdy

=

∫
Ω

f (x, t, uk)
∂uk
∂t

dx.
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According to (3.7), we have

1

2

d

dt

∫
Ω

uk(x, t)2dx+
1

2
‖uk(x, t)‖pW0

≤ C5

((∫
Ω

∣∣uk∣∣2dx)λ/2 +

∫
Ω

∣∣uk∣∣2dx).
Similar to the estimation of b(t), we have

(3.11)
∫

Ω

|uk(x, t)|2 dx ≤ C(T ), ∀t ∈ [0, T ] (T < T0).

Moreover

(3.12) ‖uk‖Lp(0,T ;W0) ≤ C6.

Hence, we get

(3.13) ‖uk‖L∞(0,T ;L2(Ω;Rm)) ≤ C7.

According to (3.10) and (H1), we get

(3.14)
∫

Ω

∣∣∣∣∂uk∂t
∣∣∣∣2 dx

+

∫∫
QΩ

|uk(x, t)− uk(y, t)|p−2(uk(x, t)− uk(y, t))

|x− y|n+ps

(∂uk(x, t)

∂t
−∂uk(y, t)

∂t

)
dxdy

− d

dt

∫
Ω

F (x, t, uk) dx ≤ −
∫

Ω

Ft (x, t, uk) dx ≤ α1

∫
Ω

|uk|q dx+ α1.

From the fact

1

p

d

dt
‖uk(x, t)‖pW0

=

∫∫
QΩ

|uk(x, t)− uk(y, t)|p−2(uk(x, t)− uk(y, t))

|x− y|n+ps

(∂uk(x, t)

∂t
−∂uk(y, t)

∂t

)
dxdy,

applied to (3.14), we deduce

(3.15)
∫

Ω

∣∣∣∣∂uk∂t
∣∣∣∣2 dx+

d

dt

(
1

p
‖uk(x, t)‖pW0

−
∫

Ω

F (x, t, uk) dx

)

≤ α1

(∫
Ω

|uk|qdx+ 1

)
.
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By using the same technique in (3.5) and using (3.11) to the term in the
right-hand side of (3.15), we get∫

Ω

∣∣∣∣∂uk∂t
∣∣∣∣2dx+

d

dt

(
1

p
‖uk(x, t)‖pW0

−
∫

Ω

F (x, t, uk) dx

)
(3.16)

≤ α1εCp∗s‖uk(x, t)‖pW0
+ α1C(ε)

(∫
Ω

|uk|2dx
)λ/2

+ α1

≤ C8

(
‖uk(x, t)‖pW0

+ 1
)
.

Integrating (3.16) with respect to t from 0 to τ (τ ∈ (0, T ]) and using the
strong convergence in uk(x, 0)→ u0(x) in W0, we get∫

Qτ

∣∣∣∣∂uk∂t
∣∣∣∣2 dxdt+

1

p
‖uk(x, τ)‖pW0

≤ C9

(∫ τ

0

‖uk(x, t)‖pW0
dt+ 1

)
(3.17)

+

∫
Ω

F (x, τ, uk) dx.

By assumption (H1) and interpolation inequality used in (3.5), we get

(3.18)
∫

Ω

F (x, τ, uk) dx ≤ α1εCp∗s‖uk(x, τ)‖pW0
+ α1C(ε)

(∫
Ω

|uk|2dx
)λ/2

.

Plugging (3.18) in (3.17), we arrive at∫
Qτ

∣∣∣∣∂uk∂t
∣∣∣∣2 dxdt+1

p
‖uk(x, τ)‖pW0

≤ C9

(∫ τ

0

‖uk(x, t)‖pW0
dt+ 1

)

+α1εCp∗s‖uk(x, τ)‖pW0
+ α1C(ε)

(∫
Ω

|uk(x, τ)|2dx
)λ/2

.

By choosing ε = 1
2α1pCp∗s

, we get

∫
Qτ

∣∣∣∣∂uk∂t
∣∣∣∣2 dxdt+ 1

2p
‖uk(x, τ)‖pW0

≤ C10

(∫ τ

0

‖uk(x, t)‖pW0
dt+ 1

)
.

The Gronwall inequality implies that
∫ τ

0
‖uk(x, t)‖pW0

dt ≤ C11 for each τ ∈
[0, T ]. Therefore ∫

Qτ

∣∣∣∣∂uk∂t
∣∣∣∣2 dxdt+

1

2p
‖uk(x, τ)‖pW0

≤ C12.
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We finally get

(3.19)
∥∥∥∥∂uk∂t

∥∥∥∥
L2(QT )

+ ‖uk‖L∞(0,T ;W0) ≤ C13.

The assumption (H1) implies that

(3.20) ‖f (x, t, uk)‖Lq′(QT ) ≤ C14.

Assertion 3: Passage to the limit

By virtue of (3.12), (3.13), (3.19), and (3.20), we get the existence of
a subsequence of (uk) still denoted by (uk) such that

(3.21)


uk ⇀

∗ u in L∞
(
0, T ;L2 (Ω;Rm)

)
∩ L∞(0, T ;W0),

uk ⇀ u in Lp (0, T ;W0) ,

∂uk
∂t ⇀ ∂u

∂t in L2 (QT ;Rm) ,

f(x, t, uk) ⇀ χ in Lq
′
(QT ,Rm).

[28, Theorem 5.1] and (3.21) imply that uk → u in Lp(0, T, L2(Ω;Rm)) and
a.e. onQT (for a subsequence), and [28, Lemma 1.3] implies that f(x, t, u) = χ.
We can conclude from the continuity in (H1),

f (x, t, uk)uk → f(x, t, u)u a.e. in QT .

Using the Vitali Theorem, we get

lim
k→∞

∫
QT

f (x, t, uk)ukdxdt =

∫
QT

f(x, t, u)udxdt.

By
∫

Ω

uk(x, T )2dx ≤ C15, we get the existence of a subsequence of (uk) still

denoted by (uk) and a function û in L2 (Ω;Rm) such that uk(x, T ) → û in
L2 (Ω;Rm). Then, for any b(t) ∈ C1([0, T ]) and φ ∈ C∞0 (Ω),∫

Q

∂uk
∂t

bφdxdt =

∫
Ω

uk(x, T )b(T )φdx

−
∫

Ω

uk(x, 0)b(0)φdx−
∫
Q

uk
∂b

∂t
φdxdt.
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Tending k to ∞, we get∫
Ω

(û− u(x, T )) b(T )φdx−
∫

Ω

(u0(x)− u(x, 0)) b(0)φdx = 0.

Choosing b(T ) = 1, b(0) = 0 or b(T ) = 0, b(0) = 1, we have û = u(x, T ) and
u0(x) = u(x, 0).

As stated in the introduction, Young measure is the tool we use to prove
the existence of a weak solution. To identify the weak limit, we consider the
following lemma:

Lemma 3.4. Suppose that (3.12) holds. Then, the Young measure µ(x,y,t)

generated by uk(x,t)−uk(y,t)

|x−y|
n
p

+s ∈ Lp (QΩ × (0, T );Rm) has the following proper-

ties:
(a)

∥∥µ(x,y,t)

∥∥
M(Rm)

= 1 for a.e. (x, y, t) ∈ QΩ × (0, T ), i.e. µ(x,y,t) is a
probability measure.

(b)
〈
µ(x,y,t), id

〉
=

∫
Rm

λdµ(x,y,t)(λ) is the weak L1-limit of uk(x,t)−uk(y,t)

|x−y|
n
p

+s .

(c)
〈
µ(x,y,t), id

〉
= u(x,t)−u(y,t)

|x−y|
n
p

+s for a.e. (x, y, t) ∈ QΩ × (0, T ).

Proof. (a) For simplicity reasons, we consider

(3.22) vk(x, y, t) =
uk(x, t)− uk(y, t)

|x− y|
n
p+s

∈ Lp (QΩ × (0, T );Rm) .

We know that for any M > 0, (Ω ∩BM )
2 ⊆ Ω × Ω & QΩ, where BM is the

ball centered in 0 with radius M . Let N ∈ R be such that

QN ≡ {(x, y, t) ∈ Ω ∩BM × Ω ∩BM × (0, T ) : |vk(x, y, t)| ≥ N} .

Using (3.12), we get

‖vk‖Lp(QΩ×(0,T );Rm) =

(∫ T

0

∫∫
QΩ

|uk(x, t)− uk(y, t)|p

|x− y|n+ps
dxdydt

)1/p

= ‖uk‖Lp(0,T ;W0) ≤M.
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Consequently, there exists C16 ≥ 0 such that

(3.23) C16 ≥
∫∫

QΩ×(0,T )

|vk(x, y, t)|p dxdy

≥
∫∫

QN

|vk(x, y, t)|p dxdy ≥ Np |QN | ,

where |QN | is the Lebesgue measure of QN . According to (3.23), the sequence
(vk) satisfies (2.2). Hence, a Young measure noted by µ(x,y,t) is generated by
vk such that

∥∥µ(x,y,t)

∥∥
M(Rm)

= 1 for a.e. (x, y, t) ∈ QΩ × (0, T ).
(b) By (3.12), there exists a subsequence still denoted by (vk) that con-

verges in Lp (QΩ × (0, T );Rm). Since Lp (QΩ × (0, T );Rm) is reflexive, then
vk is weakly convergent in L1 (QΩ × (0, T );Rm). By the third assertion in
Lemma 2.4, we replace the function ρ by the identity function, to obtain

vk ⇀
〈
µ(x,y,t), id

〉
=

∫
Rm

λdµ(x,y,t)(λ) weakly in L1 (QΩ × (0, T );Rm) .

(c) According to (3.12), vk is bounded in Lp (QΩ × (0, T );Rm), then there
exists a subsequence such that vk ⇀ v in Lp (QΩ × (0, T );Rm). Owing to the
previous arguments, we get from the uniqueness of limits that

〈
µ(x,y,t), id

〉
= v(x, y, t) =

u(x, t)− u(y, t)

|x− y|
n
p+s

for a.e. (x, y, t) ∈ QΩ × (0, T ).

�

Now, let {vk} be the sequence given in (3.22), i.e.

vk(x, y, t) =
uk(x, t)− uk(y, t)

|x− y|
n+ps
p

.

The weak convergence given in Lemma 3.4 shows that

|vk(x, y, t)|p−2vk(x, y, t) ⇀

∫
Rm
|λ|p−2λdµ(x,y,t)(λ)(3.24)

= |v(x, y, t)|p−2v(x, y, t)

=
|u(x, t)− u(y, t)|p−2(u(x, t)− u(y, t))

|x− y|
n+ps
p′
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weakly in L1 (QΩ × (0, T );Rm). Since the space Lp is reflexive and
|vk(x, y, t)|p−2vk(x, y, t) is bounded in Lp

′
(QΩ × (0, T );Rm), the sequence

|vk(x, y, t)|p−2vk(x, y, t) converges in Lp
′
(QΩ × (0, T );Rm). Hence its weak

Lp
′
-limit is also |v(x, y, t)|p−2v(x, y, t). Thus, for any ϕ ∈ Lp(0, T ;W0) we

have

ϕ(x, t)− ϕ(y, t)

|x− y|
n+ps
p

∈ Lp (QΩ × (0, T );Rm) .

According to the weak limit in (3.24), we get

lim
k→∞

∫ T

0

∫∫
QΩ

|uk(x, t)−uk(y, t)|p−2(uk(x, t)−uk(y, t))

|x− y|n+ps
(ϕ(x, t)−ϕ(y, t))dxdydt

=

∫ T

0

∫∫
QΩ

|u(x, t)− u(y, t)|p−2(u(x, t)− u(y, t))

|x− y|n+ps
(ϕ(x, t)− ϕ(y, t))dxdydt

for every ϕ ∈ Lp(0, T ;W0).
From (3.9), for φ ∈ C1 (0, T ;UM ) ,M ≤ k, we have∫
QT

∂uk
∂t

φdxdt

+

∫ T

0

∫∫
QΩ

|uk(x, t)− uk(y, t)|p−2(uk(x, t)− uk(y, t))

|x− y|n+ps
(φ(x, t)−φ(y, t))dxdydt

=

∫
QT

f (x, t, uk)φdxdt.

For k tending to ∞, it follows from the above results, that

(3.25)
∫
QT

∂u

∂t
φdxdt

+

∫ T

0

∫∫
QΩ

|u(x, t)− u(y, t)|p−2(u(x, t)− u(y, t))

|x− y|n+ps
(φ(x, t)− φ(y, t))dxdydt

=

∫
QT

f(x, t, u)φdxdt,

for all φ ∈ C1
(
0, T ;

⋃
M>1

UM
)
. Letting M goes to infnity, consequently,

(3.25) holds for all φ ∈ C1(0, T ;C∞0 (Ω)). �
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4. An example

We consider the following problem
∂u
∂t + (−∆)spu = a(x, t)|u|q−2u in QT = Ω× (0, T ),

u = 0 in CΩ× (0, T ),

u(x, 0) = u0(x) in Ω,

comparing it with problem (1.1) where f(x, t, u) = a(x, t)|u|q−2u, F (x, t, u) =
a(x,t)
q |u|

q, and Ft(x, t, u) > C(−|r|q − 1). If 2 < q < p∗s, then by Theorem 3.2,
there exists a constant T0 > 0 such tha the problem (1.1) has a weak solutions
as T < T0.
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