B. Abdellaoui, A. Attar, R. Bentifour, and I. Peral, On fractional p-Laplacian parabolic problem with general data, Ann. Mat. Pura Appl. (4) 197 (2018), no. 2, 329–356.
Google Scholar
M. Abdellaoui, On the behavior of entropy solutions for a fractional p-Laplacian problem as t tends to infinity, Rend. Mat. Appl. (7) 43 (2022), no. 2, 103–132.
Google Scholar
R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.
Google Scholar
I. Athanasopoulos and L.A. Caffarelli, Optimal regularity of lower dimensional obstacle problems, J. Math. Sci. (N.Y.) 132 (2006), no. 3, 274–284.
Google Scholar
I. Athanasopoulos, L.A. Caffarelli, and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math. 130 (2008), no. 2, 485–498.
Google Scholar
E. Azroul and F. Balaadich, Strongly quasilinear parabolic systems in divergence form with weak monotonicity, Khayyam J. Math. 6 (2020), no. 1, 57–72.
Google Scholar
F. Balaadich, On p-Kirchhoff-type parabolic problems, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 2, 1005–1016.
Google Scholar
F. Balaadich and E. Azroul, Existence results for fractional p-Laplacian systems via Young measures, Math. Model. Anal. 27 (2022), no. 2, 232–241.
Google Scholar
B. Barrios, E. Colorado, A. de Pablo, and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133–6162.
Google Scholar
G.M. Bisci, Fractional equations with bounded primitive, Appl. Math. Lett. 27 (2014), 53–58.
Google Scholar
G.M. Bisci and D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl. 420 (2014), no. 1, 167–176.
Google Scholar
L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces Free Boundaries 16 (2014), no. 3, 419–458.
Google Scholar
L. Caffarelli, Non-local diffusions, drifts and games, in: H. Holden and K.H. Karlsen (eds.), Nonlinear Partial Differential Equations, Abel Symp., 7, Springer, Heidelberg, 2012, pp. 37–52.
Google Scholar
L.A. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425–461.
Google Scholar
Q.-H. Choi and T. Jung, On the fractional p-Laplacian problems, J. Inequal. Appl. (2021), Paper No. 41, 17 pp.
Google Scholar
E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955.
Google Scholar
A. de Pablo, F. Quirós, A. Rodríguez, and J.L. Vázquez, A fractional porous medium equation, Adv. Math. 226 (2011), no. 2, 1378–1409.
Google Scholar
E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.
Google Scholar
G. Dolzmann, N. Hungerbühler, and S. Müller, Non-linear elliptic systems with measure-valued right hand side, Math. Z. 226 (1997), no. 4, 545–574.
Google Scholar
A. Fiscella, R. Servadei, and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 235–253.
Google Scholar
J. Giacomoni and S. Tiwari, Existence and global behavior of solutions to fractional p-laplacian parabolic problems, Electron. J. Differential Equations (2018), Paper No. 44, 20 pp.
Google Scholar
R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
Google Scholar
N. Hungerbühler, A refinement of Ball’s theorem on Young measures, New York J. Math. 3 (1997), 48–53.
Google Scholar
A. Iannizzotto, S.J. Mosconi, and M. Squassina, Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam. 32 (2016), no. 4, 1353–1392.
Google Scholar
A. Iannizzotto and M. Squassina, 1/2-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl. 414 (2014), no. 1, 372–385.
Google Scholar
A.A. Kilbas, H.M. Srivastava, and J.J. Trujilo, Theory and Application of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
Google Scholar
R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), no. 3–4, 217–237.
Google Scholar
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (Some methods of nonlinear boundary value problems), Dunod, Paris; Gauthier-Villars, Paris, 1969.
Google Scholar
J.M. Mazón, J.D. Rossi, and J. Toledo, Fractional p-Laplacian evolution equations, J. Math. Pures Appl. (9) 105 (2016), no. 6, 810–844.
Google Scholar
S. Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Math. Anal. Semin., 7, Univ. Bologna, Alma Mater Stud., Bologna, 2016, 147–164.
Google Scholar
H. Qiu and M. Xiang, Existence of solutions for fractional p-Laplacian problems via Leray-Schauder’s nonlinear alternative, Bound. Value Probl. (2016), Paper No. 83, 8 pp.
Google Scholar
R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887–898.
Google Scholar
E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA (2009), no. 49, 33–44.
Google Scholar
J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S 7 (2014), no. 4, 857–885.
Google Scholar
J.L. Vázquez, The Dirichlet problem for the fractional p-Laplacian evolution equation, J. Differential Equations 260 (2016), no. 7, 6038–6056.
Google Scholar
M. Xiang, B. Zhang, and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl. 424 (2015), no. 2, 1021–1041.
Google Scholar