1. J.B. Bacani and J.F.T. Rabago, On generalized Fibonacci numbers, Applied Mathematical Sciences 9 (2015), no. 73, 3611–3622.
2. R. Ben Taher and M. Rachidi, Explicit formulas for the constituent matrices. Application to the matrix functions, Spec. Matrices 3 (2015), 43–52.
3. R. Ben Taher and M. Rachidi, Solving some generalized Vandermonde systems and inverse of their associate matrices via new approaches for the Binet formula, Appl. Math. Comput. 290 (2016), 267–280.
4. B. Bernoussi, M. Rachidi, and O. Saeki, Factorial Binet formula and distributional moment formulation of generalized Fibonacci sequences, Fibonacci Quart. 42 (2004), no. 4, 320–329.
5. G. Cerda-Morales, Investigation of generalized hybrid Fibonacci numbers and their properties, arXiv preprint. Available at arXiv: 1806.02231v1.
6. G. Dattoli, S. Licciardi, R.M. Pidatella, and E. Sabia, Hybrid complex numbers: the matrix version, Adv. Appl. Clifford Algebr. 28 (2018), no. 3, Paper No. 58, 17 pp.
7. G.P.B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), no. 4, Artlicle 14.4.7, 9 pp.
8. F. Dubeau, W. Motta, and M. Rachidi, O. Saeki, On weighted r-generalized Fibonacci sequences, Fibonacci Quart. 35 (1997), no. 2, 102–110.
9. G.S. Hathiwala and D.V. Shah, Binet–type formula for the sequence of Tetranacci numbers by alternate methods, Mathematical Journal of Interdisciplinary Sciences 6 (2017), no. 1, 37–48.
10. F.T. Howard and F. Saidak, Zhou’s theory of constructing identities, Congr. Numer. 200 (2010), 225–237.
11. R.S. Melham, Some analogs of the identity F^2_n + F^2_{n+1} = F^2_{2n+1}, Fibonacci Quart. 37 (1999), no. 4, 305–311.
12. L.R. Natividad, On solving Fibonacci-like sequences of fourth, fifth and sixth order, Int. J. Math. Sci. Comput. 3 (2013), no. 2, 38–40.
13. M. Özdemir, Introduction to hybrid numbers, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, Paper No. 11, 32 pp.
14. M. Özdemir, Finding n-th roots of a 2x2 real matrix using de Moivre’s formula, Adv. Appl. Clifford Algebr. 29 (2019), no. 1, Paper No. 2, 25 pp.
15. B. Singh, P. Bhadouria, O. Sikhwal, and K. Sisodiya, A formula for Tetranacci-like sequence, Gen. Math. Notes 20 (2014), no. 2, 136–141.
16. Y. Soykan, Gaussian generalized Tetranacci numbers, Journal of Advances in Mathematics and Computer Science 31 (2019), no. 3, Article no. JAMCS.48063, 21 pp.
17. A. Szynal-Liana, The Horadam hybrid numbers, Discuss. Math. Gen. Algebra Appl. 38 (2018), no. 1, 91–98.
18. A. Szynal-Liana and I. Włoch, On Jacobsthal and Jacobsthal-Lucas hybrid numbers, Ann. Math. Sil. 33 (2019), 276–283.
19. M.E. Waddill, The Tetranacci sequence and generalizations, Fibonacci Quart. 30 (1992), no. 1, 9–20.
20. M.E. Waddill and L. Sacks, Another generalized Fibonacci sequence, Fibonacci Quart. 5 (1967), no. 3, 209–222.
21. M.N. Zaveri and J.K. Patel, Binet’s formula for the Tetranacci sequence, International Journal of Science and Research (IJSR) 5 (2016), no. 12, 1911–1914.
Google Scholar