1. M. Denuit, C. Lefevre, and M. Shaked, The s-convex orders among real random variables, with applications, Math. Inequal. Appl. 1 (1998), 585–613.
2. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer-Verlag, Berlin-Heidelberg, 2001.
3. M. Klaričić Bakula and K. Nikodem, On the converse Jensen inequality for strongly convex functions, J. Math. Anal. Appl. 434 (2016), 516–522.
4. V.I. Levin and S.B. Stečkin, Inequalities, Amer. Math. Soc. Transl. (2) 14 (1960), 1–29.
5. N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193–199.
6. C.P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer, New York, 2006.
7. M. Niezgoda, An extension of Levin-Stečkin’s theorem to uniformly convex and superquadratic functions, Aequationes Math. 94 (2020), 303–321.
8. K. Nikodem, On strongly convex functions and related classes of functions, in: Th.M. Rassias (ed.), Handbook of Functional Equations. Functional Inequalities, Springer Optimization and Its Applications, Vol. 95, Springer, New York, 2014, Chpt. 16, pp. 365–405.
9. J. Ohlin, On a class of measures of dispersion with application to optimal reinsurance, ASTIN Bulletin 5 (1969), 249–266.
10. A. Olbryś and T. Szostok, Inequalities of the Hermite-Hadamard type involving numerical differentiation formulas, Results Math. 67 (2015), 403–416.
11. B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72–75.
12. T. Rajba, On the Ohlin lemma for Hermite-Hadamard-Fejér type inequalities, Math. Inequal. Appl. 17 (2014), 557–571.
13. T. Rajba, On some recent applications of stochastic convex ordering theorems to some functional inequalities for convex functions: a survey, in: J. Brzdęk, K. Ciepliński, Th.M. Rassias (eds.), Developments in Functional Equations and Related Topics, Springer Optimization and Its Applications, Vol. 124, Springer, Cham, 2017, Chpt. 11, pp. 231–274.
14. T. Rajba and Sz. Wąsowicz, Probabilistic characterization of strong convexity, Opuscula Math. 31 (2011), 97–103.
15. A.W. Roberts and D.E. Varberg, Convex Functions, Academic Press, New York-London, 1973.
16. T. Szostok, Ohlin’s lemma and some inequalities of the Hermite-Hadamard type, Aequationes Math. 89 (2015), 915–926.
17. T. Szostok, Inequalities for convex functions via Stieltjes integral, Lith. Math. J. 58 (2018), 95–103.
18. T. Szostok, Levin Stečkin theorem and inequalities of the Hermite-Hadamard type, arXiv preprint. Available at arXiv:1411.7708v1.
Google Scholar