1. Amini-Harandi A., Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012, 2012:204, 10 pp.
2. Bahyrycz A., Piszczek M., Hyperstability of the Jensen functional equation, Acta Math. Hungar. 142 (2014), 353–365.
3. Brillouët-Belluot N., Brzdęk J., Ciepliński K., On some recent developments in Ulam’s type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp.
4. Brzdęk J., On a method of proving the Hyers–Ulam stability of functional equations on restricted domains, Aust. J. Math. Anal. Appl. 6 (2009), Art. 4, 10 pp.
5. Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
6. Hyers D.H., Isac G., Rassias T.M., Stability of Functional Equations in Several Variables, Birkhäuser Boston, Boston, 1998.
7. Piszczek M., Remark on hyperstability of the general linear equation, Aequationes Math. 88 (2014), 163–168.
8. Piszczek M., Hyperstability of the general linear functional equation, Bull. Korean Math. Soc. 52 (2015), 1827–1838.
9. Rahman M.U., Sarwar M., Some new fixed point theorems in dislocated quasi-metric spaces, Palest. J. Math. 5 (2016), 171–176.
10. Sarwar M., Rahman M.U., Ali G., Some fixed point results in dislocated quasi-metric (dq-metric) spaces, J. Inequal. Appl. 2014, 2014:278, 11 pp.
11. Ulam S.M., A Collection of Mathematical Problems, Interscience Publishers, New York–London, 1960. Reprinted as: Problems in Modern Mathematics, John Wiley & Sons, New York, 1964.
Google Scholar