1. Badora R., Przebieracz B., Volkmann P., Stability of the Pexider functional equation, Ann. Math. Sil. 24 (2010), 7–13.
2. Badora R., Przebieracz B., Volkmann P., On Tabor groupoids and stability of some functional equations, Aequationes Math. 87 (2014), 165–171.
3. Forti G.L., Remark 11 (at the 22nd International Symposium on Functional Equations, Oberwolfach 1984), Aequationes Math. 29 (1985), 90–91.
4. Lifšic E.A., Ideal’no vypuklye množestva, Funkcional’. Analiz Priložen. 4 (1970), no. 4, 76–77.
5. Moszner Z., On the9. stability of functional equations, Aequationes Math. 77 (2009), 33–88.
6. Páles Z., Volkmann P., Luce R.D., Hyers–Ulam stability of functional equations with a square-symmetric operation, Proc. Nat. Acad. Sci. U.S.A. 95 (1998), 12772–12775.
7. Rätz J., On approximately additive mappings, in: General inequalities 2, International Series of Numerical Mathematics 47, Birkhäuser, Basel, 1980, pp. 233–251.
8. Tabor Jacek, Ideally convex sets and Hyers theorem, Funkcial. Ekvac. 43 (2000), 121–125.
9. Tabor Józef, Remark 18 (at the 22nd International Symposium on Functional Equations, Oberwolfach 1984), Aequationes Math. 29 (1985), 96.
10. Toborg I., Tabor groups with finiteness conditions, Aequationes Math. 90 (2016), 699–704.
11. Volkmann P., Zur Rolle der ideal konvexen Mengen bei der Stabilität der Cauchyschen Funktionalgleichung, Sem. LV, no. 6 (1999), 6 pp., http://www.math.us.edu.pl/smdk.
12. Volkmann P., O stabilności równań funkcyjnych o jednej zmiennej, Sem. LV, no. 11 (2001), 6 pp., Errata ibid. no. 11bis (2003), 1 p., http://www.math.us.edu.pl/smdk.
Google Scholar