1. J.M. Anderson, G.L. Litvinov, K.A. Ross, A.I. Singh, V.S. Sunder, N.J. Wildberger (eds.), Harmonic Analysis and Hypergroups, Birkhäuser, Boston, Basel, Berlin 1998.
2. R. Badora, R. Ger, Zs. Páles, Additive selections and the stability of the Cauchy functional equation, Bull. Austr. Math. Soc., accepted.
3. R. Badora, Zs. Páles, L. Székelyhidi, Monomial selection of set-valued maps, Aequationes Math. 58(3) (1999), 214-222.
4. G. Berruti, F. Skof, Risultati di equivalenza per un'equazione di Cauchy alternativa negli spazi normati, Atti Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 125, Fasc. 5-6 (1991), 154-167.
5. Z. Boros, Stability of the Cauchy equation in ordered fields, Math. Pannon. 11/2 (2000), 191-197.
6. J. Dhombres, Some aspects of functional equations, Chulalongkorn Univ., Bangkok 1979.
7. P. Fischer, G. Muszély, On some new generalizations of the functional equation of Cauchy, Canad. Math. Bull. 10 (1967), 197-205.
8. R. Ger, On a characterization of strictly convex spaces, Atti Acad. Sci. Torino CI. Sci. Fis. Mat. Natur. 127 (1993), 131-138.
9. R. Ger, B. Koclęga, Isometries and a generalized Cauchy equation, Aequationes Math. 60 (2000), 72-79.
10. H. Haruki, Th.M. Rassias, A new analogue of Gauss' functional equation, Internat. J. Math. Sci. 18 (1995), 749-756.
11. P. Schöpf, Solutions of ‖f(ξ+η)‖ = ‖f(ξ)+f(η)‖, Math. Pannon. 8/1 (1997), 117-127.
Google Scholar