A.A. Abu Joudeh and G. Gát, Convergence of Cesáro means with varying parameters of Walsh–Fourier series, Miskolc Math. Notes 19 (2018), no. 1, 303–317.
Google Scholar
A.A. Abu Joudeh and G. Gát, Almost everywhere convergence of Cesàro means of two variable Walsh–Fourier series with varying parameters, Ukraïn. Mat. Zh. 73 (2021), no. 3, 291–307. Ukrainian Math. J. 73 (2021), no. 3, 337–358.
Google Scholar
T. Akhobadze, Uniform convergence and (C,α)-summability of trigonometric Fourier series, Soobshch. Akad. Nauk Gruzin. SSR 128 (1987), no. 2, 249–252.
Google Scholar
T. Akhobadze, On the generalized Cesáro means of trigonometric Fourier series, Bull. TICMI 18 (2014), no. 1, 75–84.
Google Scholar
I. Blahota, L.-E. Persson, and G. Tephnadze, On the Nörlund means of Vilenkin-Fourier series, Czechoslovak Math. J. 65(140) (2015), no. 4, 983–1002.
Google Scholar
I. Blahota and G. Tephnadze, On the (C,α)-means with respect to the Walsh system, Anal. Math. 40 (2014), no. 3, 161–174.
Google Scholar
I. Blahota, G. Tephnadze, and R. Toledo, Strong convergence theorem of Cesàro means with respect to the Walsh system, Tohoku Math. J. (2) 67 (2015), no. 4, 573–584.
Google Scholar
N.J. Fine, Cesàro summability of Walsh–Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 588–591.
Google Scholar
S. Fridli, On the rate of convergence of Cesàro means of Walsh–Fourier series, J. Approx. Theory 76 (1994), no. 1, 31–53.
Google Scholar
G. Gát, On (C,1) summability of integrable functions with respect to the Walsh–Kaczmarz system, Studia Math. 130 (1998), no. 2, 135–148.
Google Scholar
G. Gát, On (C,1) summability for Vilenkin-like systems, Studia Math. 144 (2001), no. 2, 101–120.
Google Scholar
G. Gát, Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory 124 (2003), no. 1, 25–43.
Google Scholar
G. Gát and U. Goginava, Maximal operators of Cesàro means with varying parameters of Walsh–Fourier series, Acta Math. Hungar. 159 (2019), no. 2, 653–668.
Google Scholar
G. Gát and A. Tilahun, Multi-parameter setting (C,α) means with respect to one dimensional Vilenkin system, Filomat 35 (2021), no. 12, 4121–4133.
Google Scholar
K. Nagy, Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series, East J. Approx. 16 (2010), no. 3, 297–311.
Google Scholar
K. Nagy, Approximation by Nörlund means of Walsh–Kaczmarz–Fourier series, Georgian Math. J. 18 (2011), no. 1, 147–162.
Google Scholar
L.E. Persson, G. Tephnadze, and F. Weisz, Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series, Birkhäuser/Springer, Cham, 2022.
Google Scholar
F. Schipp, Certain rearrangements of series in the Walsh system, Mat. Zametki 18 (1975), no. 2, 193–201.
Google Scholar
F. Schipp, W.R. Wade, and P. Simon, with the collaboration of J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Ltd., Bristol, 1990.
Google Scholar
P. Simon, On the Cesaro summability with respect to the Walsh–Kaczmarz system, J. Approx. Theory 106 (2000), no. 2, 249–261.
Google Scholar
P. Simon, (C,α) summability of Walsh–Kaczmarz–Fourier series, J. Approx. Theory 127 (2004), no. 1, 39–60.
Google Scholar
A.Tilahun, Almost everywhere convergence of varying-parameter setting Cesáro means of Fourier series on the group of 2-adic integers, Mathematica 65(88) (2023), no. 2, 153–165.
Google Scholar
F. Weisz, Cesàro summability of two-parameter Walsh–Fourier series, J. Approx. Theory 88 (1997), no. 2, 168–192.
Google Scholar
A. Zygmund, Trigonometric Series, Cambridge University Press, New York, 1959.
Google Scholar