G. Aumann, Vollkommene Funktionalmittel und gewisse Kegelschnitteigenschaften, J. Reine Angew. Math. 176 (1937), 4955.
Google Scholar
F. Bellini and E. Rosazza Gianin, On Haezendonck risk measures, J. Bank. Finance 32 (2008), no. 6, 986-994.
Google Scholar
F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), no. 4, 514-526.
Google Scholar
M. Bessenyei and Z. Páles, Hadamard-type inequalities for generalized convex functions, Math. Inequal. Appl. 6 (2003), no. 3, 379-392.
Google Scholar
I. Blahota and G. Gát, Approximation by subsequences of matrix transform means of some two-dimensional rectangle Walsh-Fourier series, J. Fourier Anal. Appl. 30 (2024), no. 5, Paper No. 51, 35 pp.
Google Scholar
Z. Boros and W. Fechner, An alternative equation for polynomial functions, Aequationes Math. 89 (2015), no. 1, 17-22.
Google Scholar
Z. Boros and R. Menzer, An alternative equation for generalized monomials, Aequationes Math. 97 (2023), no. 1, 113-120.
Google Scholar
Z. Boros and R. Menzer, An alternative equation for generalized polynomials of degree two, Ann. Math. Sil. 38 (2024), no. 2, 214-220.
Google Scholar
Z. Daróczy and L. Losonczi, Über den Vergleich von Mittelwerten, Publ. Math. Debrecen 17 (1970), 289-297.
Google Scholar
Y. Feng and Y. Dong, Set-valued Haezendonck-Goovaerts risk measure and its properties, Discrete Dyn. Nat. Soc. 2017, Art. ID 5320908, 7 pp.
Google Scholar
Z. Gajda and Z. Kominek, On separations theorems for subadditive and superadditive functionals, Studia Math. 100 (1991), no. 1, 25-38.
Google Scholar
G. Gát, Almost everywhere divergence of Cesàro means of subsequences of partial sums of trigonometric Fourier series, Math. Ann. 389 (2024), no. 4, 4199-4231.
Google Scholar
A. Gilányi and Z. Páles, Bernstein-Doetsch and Sierpiński theorems for (M;N)-convex functions, Talk, 11th International Conference on Functional Equations and Inequalities, Stefan Banach International Mathematical Center, Będlewo, Poland, September 1723, 2006.
Google Scholar
M.J. Goovaerts, R. Kaas, J. Dhaene, and Q. Tang, Some new classes of consistent risk measures, Insurance Math. Econom. 34 (2004), no. 3, 505-516.
Google Scholar
R. Grünwald and Z. Páles, On the equality problem of generalized Bajraktarević means, Aequationes Math. 94 (2020), no. 4, 651-677.
Google Scholar
J. Haezendonck and M. Goovaerts, A new premium calculation principle based on Orlicz norms, Insurance Math. Econom. 1 (1982), no. 1, 41-53.
Google Scholar
O. Hesselager, Extensions of Ohlin's lemma with applications to optimal reinsurance structures, Insurance Math. Econom. 13 (1993), no. 1, 83-97.
Google Scholar
A. Járai, Gy. Maksa, and Z. Páles, On Cauchy-differences that are also quasisums, Publ. Math. Debrecen 65 (2004), no. 34, 381-398.
Google Scholar
T. Kiss, On the balancing property of Matkowski means, Aequationes Math. 95 (2021), no. 1, 75-89.
Google Scholar
T. Kiss, Regular solutions of a functional equation derived from the invariance problem of Matkowski means, Aequationes Math. 96 (2022), no. 5, 1089-1124.
Google Scholar
T. Kiss, A Pexider equation containing the aritmetic mean, Aequationes Math. 98 (2024), no. 2, 579-589.
Google Scholar
T. Kiss and G. Nagy, On the σ-balancing property of multivariate generalized quasiarithmetic means, Math. Inequal. Appl. 27 (2024), no. 4, 1009-1019.
Google Scholar
Z. Kominek, L. Reich, and J. Schwaiger, On additive functions fulfilling some additional condition, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 35-42.
Google Scholar
P. Kranz, Additive functionals on abelian semigroup, Comment. Math. Prace Mat. 16 (1972), 239-246.
Google Scholar
P. Kutas, Algebraic conditions for additive functions over the reals and over finite fields , Aequationes Math. 92 (2018), no. 3, 563-575.
Google Scholar
L. Losonczi, Equality of two variable weighted means: reduction to dierential equations, Aequationes Math. 58 (1999), no. 3, 223-241.
Google Scholar
C. Niculescu and L.-E. Persson, Convex Functions and Their Applications, CMS Books in Mathematics, Springer, New York, 2006.
Google Scholar
Z. Páles, Inequalities for sums of powers, J. Math. Anal. Appl. 131 (1988), no. 1, 265-270.
Google Scholar
Z. Páles, On comparison of homogeneous means, Ann. Univ. Sci. Budapest. Eótvós Sect. Math. 32 (1989), 261-266.
Google Scholar
Z. Páles, Comparison of two variable homogeneous means, in: W. Walter (ed.), General Inequalities. 6, Internat. Ser. Numer. Math., 103, Birkhäuser Verlag, Basel, 1992, pp. 59-70.
Google Scholar
Z. Páles and A. Zakaria, On the equality problem of two-variable Bajraktarević means under first-order difierentiability assumptions, Aequationes Math. 97 (2023), no. 2, 279-294.
Google Scholar
Report of Meeting. The 60th International Symposium on Functional Equations, Hotel Rewita, Ko±cielisko (Poland), June 9-15, 2024, Aequationes Math. 98 (2024), no. 6, 1689-1712.
Google Scholar
P. Tóth, Measurable solutions of an alternative functional equation, submitted in 2024.
Google Scholar
T. Zgraja, Continuity of functions which are convex with respect to means, Publ. Math. Debrecen 63 (2003), no. 3, 401-411.
Google Scholar