1. C.D. Aliprantis and R. Tourky, Cones and Duality, Graduate Studies in Mathematics, 84, American Mathematical Society, Providence, 2007.
2. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
3. L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
4. Z. Kadelburg, S. Radenović, and V. Rakočević, Topological vector space-valued cone metric spaces and fixed point theorems, Fixed Point Theory Appl. 2010, Art. ID 170253, 17 pp.
5. L.V. Kantorovich, On some further applications of the Newton approximation method, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 12 (1957), no. 7, 68–103 (in Russian).
6. E. Karapınar, Some nonunique fixed point theorems of Ćirić type on cone metric spaces, Abstr. Appl. Anal. 2010, Art. ID 123094, 14 pp.
7. M.A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl. 2010, Art. ID 315398, 7 pp.
8. S.D. Lin, A common fixed point theorem in abstract spaces, Indian J. Pure Appl. Math. 18 (1987), no. 8, 685–690.
9. Sh. Rezapour and R. Hamlbarani, Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mapping”, J. Math. Anal. Appl. 345 (2008), no. 2, 719–724.
10. B.E. Rhoades, Contractive definitions and continuity, in: R.F. Brown (ed.), Fixed Point Theory and Its Applications, Contemp. Math., 72, Amer. Math. Soc., Providence, 1988, pp. 233–245.
11. B. Rzepecki, On fixed point theorems of Maia type, Publ. Inst. Math. (Beograd) (N.S.) 28(42) (1980), 179–186.
12. A. Sonmez and H. Cakalli, Cone normed spaces and weighted means, Math. Comput. Modelling 52 (2010), no. 9-10, 1660–1666.
13. J.S. Vandergraft, Newton’s method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4 (1967), 406–432.
Google Scholar