1. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society, Colloquium Publications, 48, American Mathematical Society, Providence, 2000.
2. N. Bourbăcuţ, Problem 11641, Amer. Math. Monthly 119 (2012), no. 4, p. 345.
3. N. Dunford and B.J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323–392.
4. R. Ger, Stability aspects of delta-convexity, in: Th.M. Rasssias, J. Tabor (eds.), Stability of Mappings of Hyers-Ulam Type, Hadronic Press, Palm Harbor, 1994, pp. 99–109.
5. R. Ger, A Functional Inequality, Solution of Problem 11641, Amer. Math. Monthly 121 (2014), no. 2, 174–175.
6. N. Kuhn, On the structure of (s,t)-convex functions, in: W. Walter (ed.), General Inequalities. 5. Proceedings of the Fifth International Conference held in Oberwolfach, May 4-10, 1986, International Series of Numerical Mathematics, 80, Birkhäuser Verlag, Basel, 1987, pp. 161–174.
7. D.Ş. Marinescu and M. Monea, An extension of a Ger’s result, Ann. Math. Sil. 32 (2018), 263–274.
8. A. Olbryś, A support theorem for delta (s,t)-convex mappings, Aequationes Math. 89 (2015), no. 3, 937–948.
9. R.S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. 65 (1943), 108–136.
10. L. Veselý and L. Zajíček, Delta-convex Mappings Between Banach Spaces and Applications, Dissertationes Math. (Rozprawy Mat.) 289, Polish Scientific Publishers, Warszawa, 1989.
Google Scholar