Z. Boros and W. Fechner, An alternative equation for polynomial functions, Aequationes Math. 89 (2015), no. 1, 17-22.
Google Scholar
Z. Boros and R. Menzer, An alternative equation for generalized monomials, Aequationes Math. 97 (2023), no. 1, 113-120.
Google Scholar
H. Bühlmann, Mathematical Models in Risk Theory, Springer-Verlag, Berlin, 1970.
Google Scholar
J. Chudziak, On applications of inequalities for quasideviation means in actuarial mathematics, Math. Inequal. Appl. 21 (2018), no. 3, 601-610.
Google Scholar
J. Chudziak, On quasi-convexity of the zero utility principle, J. Nonlinear Convex Anal. 19 (2018), no. 5, 749-758.
Google Scholar
Zs. Páles, General inequalities for quasideviation means, Aequationes Math. 36 (1988), no. 1, 32-56.
Google Scholar
G.G. Borus and A. Gilányi, Computer assisted solution of systems of two variable linear functional equations, Aequationes Math. 94 (2020), no. 4, 723-736.
Google Scholar
A. Gilányi and L.N. To, Computer assisted investigation of alienness of linear functional equations, Aequationes Math. 97 (2023), no. 5-6, 1185-1199.
Google Scholar
C.P. Okeke and M. Sablik, Functional equation characterizing polynomial functions and an algorithm, Results Math. 77 (2022), no. 3, Paper No. 125, 17 pp.
Google Scholar
C.P. Okeke, W.I. Ogala, and T. Nadhomi, On symbolic computation of C.P. Okeke functional equations using Python programming language, Aequationes Math. (2023). http://dx.doi.org/10.1007/s00010-023-01008-2
Google Scholar
Z. Daróczy and L. Losonczi, Über den Vergleich von Mittelwerten, Publ. Math. Debrecen 17 (1970), 289-297.
Google Scholar
Zs. Páles, Inequalities for sums of powers, J. Math. Anal. Appl. 131 (1988), no. 1, 265-270.
Google Scholar
Zs. Páles, On comparison of homogeneous means, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 32 (1989), 261-266.
Google Scholar
Zs. Páles, Comparison of two variable homogeneous means, in: W. Walter (ed.), General Inequalities. 6, Internat. Ser. Numer. Math., 103, Birkhäuser Verlag, Basel, 1992, pp. 59-70.
Google Scholar
M. Lewicki and A. Olbryś, On non-symmetric t-convex functions, Math. Inequal. Appl. 17 (2014), no. 1, 95-100.
Google Scholar
K. Nikodem and Zs. Páles, Note on t-quasiane functions, Ann. Univ. Sci. Budapest. Sect. Comput. 29 (2008), 127-139.
Google Scholar
B.C. Bedregal, R.H.S. Reiser, and G.P. Dimuro, Revisiting Xor-implications: classes of fuzzy (co)implications based on f-Xor (f-XNor) connectives, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 21 (2013), no. 6, 899-925.
Google Scholar
Z. Boros and W. Fechner, An alternative equation for polynomial functions, Aequationes Math. 89 (2015), no. 1, 17-22.
Google Scholar
Z. Boros and R. Menzer, An alternative equation for generalized monomials involving measure, Publ. Math. Debrecen 104 (2024), no. 12, 171-183.
Google Scholar
Z. Kominek, L. Reich, and J. Schwaiger, On additive functions fullling some additional condition, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 35-42.
Google Scholar
L. Székelyhidi, Regularity properties of polynomials on groups, Acta Math. Hungar. 45 (1985), no. 12, 15-19.
Google Scholar
J. Makó and Zs. Páles, On ϕ-convexity, Publ. Math. Debrecen 80 (2012), no. 12, 107-126.
Google Scholar
J. Lawson and Y. Lim, A general framework for extending means to higher orders, Colloq. Math. 113 (2008), no. 2, 191-221.
Google Scholar
A. Horwitz, Invariant means, J. Math. Anal. Appl. 270 (2002), no. 2, 499-518.
Google Scholar
F. Bellini and E.R. Gianin, On Haezendonck risk measures, J. Bank. Finance 32 (2008), no. 6, 986-994.
Google Scholar
J. Haezendonck and M. Goovaerts, A new premium calculation principle based on Orlicz norms, Insur. Math. Econ. 1 (1982), no. 1, 41-53.
Google Scholar
. Stettner, Long run stochastic control problems with general discounting, submitted. Available at arXiv: 2306.14224.
Google Scholar
L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. (2) 48 (1947), 857-929.
Google Scholar
J.-P. Kahane, Lectures on Mean Periodic Functions, Tata Institute of Fundamental Research, Bombay, 1959.
Google Scholar
D.-Ş. Marinescu and C.P. Niculescu, Old and new on the 3-convex functions, arXiv preprint, 2023. Available at arXiv: 2305.04353v1.
Google Scholar
L. Székelyhidi, On the Levi-Civita functional equation, Ber. Math.-Statist. Sekt. Forschungsgesellsch. Joanneum, 301, Forschungszentrum Graz, Mathematisch-Statistische Sektion, Graz, 1988, 23 pp.
Google Scholar
D. Solow and F. Fu, On the roots of convex functions, J. Convex Anal. 30 (2023), no. 1, 143-157.
Google Scholar
T. Kiss, A Pexider equation containing the arithmetic mean, Aequationes Math. (2023). https://doi.org/10.1007/s00010-023-00966-x
Google Scholar
Report of Meeting. The 59th International Symposium on Functional Equations, Hotel Aurum, Hajdúszoboszló (Hungary), June 1825, 2023, Aequationes Math. 97 (2023), no. 5-6, 1259-1290.
Google Scholar
C. Alsina, J. Sikorska, and M.S. Tomás, Norm Derivatives and Characterizations of Inner Product Spaces, World Scientic, Hackensack, NJ, 2010.
Google Scholar
K. Gryszka and P. Wójcik, Generalized orthogonality equations in finite-dimensional normed spaces, Ann. Funct. Anal. 14 (2023), no. 2, Paper No. 41, 13 pp.
Google Scholar
H. Bühlmann, Mathematical Models in Risk Theory, Springer-Verlag, Berlin, 1970.
Google Scholar
A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, J. Risk Uncertain. 5 (1992), no. 4, 297-323.
Google Scholar
J. Dhaene, M. Denuit, M.J. Goovaerts, R. Kaas, and D. Vyncke, The concept of comonotonicity in actuarial science and nance: theory, Insur. Math. Econ. 31 (2002), no. 1, 3-33.
Google Scholar