1. Balogh Z.M., Ibrogimov O.O., Mityagin B.S., Functional equations and the Cauchy mean value theorem, Aequationes Math. 90 (2016), no. 4, 683–697.
2. Bernstein F., Doetsch G., Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), no. 4, 514–526.
3. Bessenyei M., Páles Z., A contraction principle in semimetric spaces, J. Nonlinear Convex Anal. 18 (2017), no. 3, 515–524.
4. Blahota I., Gát G., Almost everywhere convergence of Marcinkiewicz means of Fourier series on the group of 2-adic integers, Studia Math. 191 (2009), no. 3, 215–222.
5. Carter P., Lowry-Duda D., On functions whose mean value abscissas are midpoints, with connections to harmonic functions, Amer. Math. Monthly 124 (2017), no. 6, 535–542.
6. Chrząszcz K., Jachymski J., Turoboś F., On characterizations and topology of regular semimetric spaces, Publ. Math. Debrecen. To appear.
7. Cuculière R., Problem 11998, Amer. Math. Monthly 124 (2017), no. 7, 660.
8. van Dijk G., Introduction to Harmonic Analysis and Generalized Gelfand Pairs, de Gruyter Studies in Mathematics, 36, Walter de Gruyter & Co., Berlin, 2009.
9. Fechner Ż., Székelyhidi L., Spherical and moment functions on the affine group SU(2). Preprint.
10. Frink A.H., Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), no. 2, 133–142.
11. Gát G., On the almost everywhere convergence of Fejér means of functions on the group of 2-adic integers, J. Approx. Theory 90 (1997), no. 1, 88–96.
12. Gát G., Almost everywhere convergence of Cesàro means of Fourier series on the group of 2-adic integers, Acta Math. Hungar. 116 (2007), no. 3, 209–221.
13. Gát G., Almost everywhere convergence of Fejér means of two-dimensional triangular Walsh-Fourier series, J. Fourier Anal. Appl. (2017) DOI: 10.1007/s00041-017-9566-2.
14. Gát G., Goginava U., Almost Everywhere Convergence of lacunary sequence of triangular partial Sums of Double Walsh-Fourier series. Preprint.
15. Gát G., Goginava U., Almost everywhere convergence of subsequence of quadratic partial sums of two-dimensional Walsh-Fourier series, Anal. Math. 44 (2018), no. 1, 73–88.
16. Gát G., Toledo R., Estimating the error of the numerical solution of linear differential equations with constant coefficients via Walsh polynomials, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 31 (2015), no. 2, 309–330.
17. Gilányi A., González C., Nikodem K., Páles Z., Bernstein–Doetsch type theorems with Tabor type error terms for set-valued maps, Set-Valued Var. Anal. 25 (2017), no. 2, 441–462.
18. Gselmann E., Kiss G., Laczkovich M., Vincze C., Vectorial spectral synthesis and Pexiderized functional equations. Preprint 2017, 18 pp.
19. Gselmann E., Kiss G., Vincze C., On functional equations characterizing derivations: methods and examples, Results Math. 73 (2018), no. 2, Art. 74, 27 pp.
20. Gselmann E., Kiss G., Vincze C., Characterization of field homomorphisms through Pexiderized functional equations. Preprint 2018, 15 pp.
21. Házy A., Makó J., On (c,α)-Jensen convexity. Preprint 2018.
22. Massanet S., Recasens J., Torrens J., Fuzzy implication functions based on powers of continuous t-norms, Internat. J. Approx. Reason. 83 (2017), 265–279.
23. Massanet S., Recasens J., Torrens J., Some characterizations of T-power based implications. Preprint.
24. Shih Y.P., Han J.Y., Double Walsh series solution of first-order partial differential equations, Internat. J. Systems Sci. 9 (1978), no. 5, 569–578.
25. Székelyhidi L., Spherical spectral synthesis, Acta Math. Hungar. 153 (2017), no. 1, 120–142.
26. Taibleson M.H., Fourier Analysis on Local Fields, Princeton University Press, Princeton, 1975.
Google Scholar