1. Aczél J., Ng C.T., A lemma on the angles between a fixed line and the lines connecting a fixed point on it with the points of a convex arc, Internat. Ser. Numer. Math. 103 (1992), 463–464.
2. Aumann G., Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelverten, S.-B. math.-naturw. Abt. Bayer. Akad. Wiss. München 1933, pp. 405–413.
3. Baron K., Matkowski J., Nikodem K., A sandwich with convexity, Math. Pannonica 5 (1994), no. 1, 139–144.
4. Daróczy Z., Páles Zs., Convexity with given infinite weight sequences, Stochastica 11 (1987), 5–12.
5. Dragomir S.S., Toader G.H., Some inequalities for m-convex functions, Studia Univ. Babes-Bolyai Math. 38 (1993), no. 1, 21–28.
6. Kuczma M., An introduction to the theory of functional equations and inequalities, Cauchy’s equation and Jensen’s inequality, Państwowe Wydawnictwo Naukowe and Uniwersytet Śląski, Warszawa–Kraków–Katowice, 1985; Second edition (edited by A. Gilányi), Birkhäuser, Basel, 2008.
7. Lara T., Sánchez J.L., Rosales E., New properties of m-convex functions, Internat. J. Math. Anal. 9 (2015), no. 15, 735–742.
8. Lara T., Merentes N., Quintero R., Rosales E., On strongly m-convex functions, Math. Aeterna 5 (2015), no. 3, 521–535.
9. Matkowski J., A functional inequality characterizing convex functions, conjugacy and a generalization of Hölder’s and Minkowski’s inequalities, Aequationes Math. 40 (1990), 169–180.
10. Matkowski J., L^p-like paranorms, in: Selected topics in functional equations and iteration theory, Proceedings of the Austrian-Polish Seminar, Universität Graz, October 24-26, 1991 (edited by D. Gronau, L. Reich), Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 103–139.
11. Matkowski J., Pycia M., Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm, Ann. Polon. Math. 60 (1995), 221–230.
12. Matkowski J., Wróbel M., Remark on m-convexity and sandwich theorem, J. Math. Anal. Appl. 451 (2017), 924–930.
13. Mocanu P.T., Serb I., Toader G.H., Real star-convex functions, Studia Univ. Babes-Bolyai Math. 42 (1997), no. 3, 65–80.
14. Pycia M., Linear functional inequalities – a general theory and new special cases, Dissertationes Math. 438 (2006), 62 pp.
15. Toader G.H., Some generalizations of the convexity, Proc. Colloq. Approx. Optim. Cluj-Napoca (Romania) 1984, pp. 329–338.
16. Toader S., The order of a star-convex function, Bull. Appl. Comp. Math. 85 (1998), 347–350.
Google Scholar