Report of Meeting. The Seventeenth Katowice–Debrecen Winter Seminar Zakopane (Poland) , February 1–4, 2017



Abstract

Report of Meeting. The Seventeenth Katowice–Debrecen Winter Seminar Zakopane (Poland) , February 1–4, 2017.


Keywords

functional equations and inequalities; convex functions

1. Aczél J., Daróczy Z., Über verallgemeinerte quasilineare Mittelwerte, die mit Gewichtsfunktionen gebildet sind, Publ. Math. Debrecen 10 (1963), 171–190.
2. Almira J.M., Shulman E.V., On certain generalizations of the Levi-Civita and Wilson functional equations. Preprint.
3. Bessenyei M., Pénzes E., Separation problems in context of h-convexity. Preprint.
4. Bourbăcuţ N., Problem 11641, Amer. Math. Monthly 119 (2012), no. 4, p. 345.
5. Carleson L., On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157.
6. Daróczy Z., Maksa Gy., Páles Zs., On two-variable means with variable weights, Aequationes Math. 67 (2004), no. 1–2, 154–159.
7. Farah I., Approximate homomorphisms. II: Group homomorphisms, Combinatorica 20 (2000), no. 1, 47–60.
8. Fechner Ż., Székelyhidi L., Sine functions on hypergroups, Arch. Math. (Basel) 106 (2016), no. 4, 371–382.
9. Gajda Z., On multiplicative solutions of the parallelogram functional equation, Abh. Math. Sem. Univ. Hamburg 63 (1993), 59–66.
10. Ger R., A Functional Inequality, Solution of Problem 11641, Amer. Math. Monthly 121 (2014), no. 2, 174–175.
11. Gilányi A., Merentes N., Quintero R., Mathability and an animation related to a convex-like property, 7th IEEE Conference on Cognitive Infocommunications (CogInfoCom) 2016, pp. 227–231.
12. Gilányi A., Merentes N., Quintero R., Presentation of an animation of the m-convex hull of sets, 7th IEEE Conference on Cognitive Infocommunications (CogInfoCom) 2016, pp. 307–308.
13. Hammer C., Volkmann P., Die multiplikativen Lösungen der Parallelogrammgleichung, Abh. Math. Sem. Univ. Hamburg 61 (1991), 197–201.
14. Kominek Z., Sikorska J., Alienation of the logarithmic and exponential functional equations, Aequationes Math. 90 (2016), no. 1, 107–121.
15. Lara T., Merentes N., Nikodem K., Strong h-convexity and separation theorems, Int. J. Anal. 2016 (2016), 5 pp.
16. Lisak A., Sablik M., Trapezoidal rule revisited, Bull. Inst. Math. Acad. Sin. (N.S.) 6 (2011), no. 3, 347–360.
17. Losonczi L., Equality of two variable weighted means: reduction to differential equations, Aequationes Math. 58 (1999), no. 3, 223–241.
18. Marinescu D.Ş., Monea M., An extension of a Ger’s result, Ann. Math. Sil. To appear.
19. Matkowski J., Remark on BV-solutions of a functional equation connected with invariant measures, Aequationes Math. 29 (1985), no. 2–3, 210–213.
20. Olbryś A., A support theorem for delta (s, t)-convex mappings, Aequationes Math. 89 (2015), no. 3, 937–948.
21. Olbryś A., On separation by h-convex functions, Tatra Mt. Math. Publ. 62 (2015), 105–111.
22. Páles Zs., Problems in the regularity theory of functional equations, Aequationes Math. 63 (2002), no. 1–2, 1–17.
23. Páles Zs., Pasteczka P., Characterization of the Hardy property of means and the best Hardy constants, Math. Inequal. Appl. 19 (2016), no. 4, 1141–1158.
24. Pawlikowska I., A characterization of polynomials through Flett’s MVT, Publ. Math. Debrecen 60 (2002), no. 1–2, 1–14.
25. Rădulescu M., On a supra-additive and supra-multiplicative operator of C(X), Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.) 24(72) (1980), no. 3, 303–305.
26. Sablik M., Taylor’s theorem and functional equations, Aequationes Math. 60 (2000), no. 3, 258–267.
27. Székelyhidi L., Convolution type functional equations on topological abelian groups, World Scientific Publishing Co. Inc., Teaneck, 1991.
28. Székelyhidi L., Functional Equations on Hypergroups, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2013.
29. Toader G., Some generalizations of the convexity, in: Proceedings of the colloquium on approximation and optimization (Cluj-Napoca, 1985), Univ. Cluj-Napoca, Cluj-Napoca, 1985, pp. 329–338.
30. Totik V., On the divergence of Fourier series, Publ. Math. Debrecen 29 (1982), no. 3–4, 251–264.
31. Voit M., Sine functions on compact commutative hypergroups, Arch. Math. (Basel) 107 (2016), no. 3, 259–263.
32. Zalcwasser Z., Sur la sommabilité des séries de Fourier, Studia Math. 6 (1936), 82–88.
Download

Published : 2017-05-11


AMSilR. (2017). Report of Meeting. The Seventeenth Katowice–Debrecen Winter Seminar Zakopane (Poland) , February 1–4, 2017. Annales Mathematicae Silesianae, 31, 187-204. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/13952

Redakcja AMSil  annales.math@us.edu.pl
Instytut Matematyki, Uniwersytet Śląski w Katowicach  Poland



The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.

  1. License
    This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.
  2. Author’s Warranties
    The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s.
  3. User Rights
    Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor.
  4. Co-Authorship
    If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.