1. Baczyński M., Jayaram B., Fuzzy implications, Springer, Berlin, 2008.
2. Badora R., Chmieliński J., Decomposition of mappings approximately inner product preserving, Nonlinear Analysis 62 (2005), 1015–1023.
3. Baron K., On the convergence in law of iterates of random-valued functions, Aust. J. Math. Anal. Appl. 6 (2009), no. 1, Art. 3, 9 pp.
4. Boros Z., Páles Zs., Q-subdifferential of Jensen-convex functions, J. Math. Anal. Appl. 321 (2006), 99–113.
5. Bustince H., Campión M.J., Fernández F.J., Induráin E., Ugarte M.D., New trends on the permutability equation, Aequationes Math. 88 (2014), 211–232.
6. Chmieliński J., Orthogonality equation with two unknown functions, Manuscript.
7. Fechner W., Sikorska J., On the stability of orthogonal additivity, Bull. Polish Acad. Sci. Math. 58 (2010), 23–30.
8. Gajda Z., Kominek Z., On separations theorems for subadditive and superadditive functionals, Studia Math. 100 (1991), 25–38.
9. Ger R., On functional inequalities stemming from stability questions, in: General Inequalities 6, Internat. Ser. Numer. Math. 103, Birkhäuser, Basel, 1992, pp. 227–240.
10. Ger R., Kominek Z., Boundedness and continuity of additive and convex functionals, Aequationes Math. 37 (1989), no. 2–3, 252–258.
11. Ger R., Sikorska J., Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43 (1995), 143–151.
12. Jayaram B., Baczyński M., Mesiar R., R-implications and the exchange principle: the case of border continuous t-norms, Fuzzy Sets and Systems 224 (2013), 93–105.
13. Kiss T., Separation theorems for generalized convex functions (hu), Master thesis, 2014, Supervisor: Dr. Zsolt Páles.
14. Klement E.P., Mesiar R., Pap E., Triangular Norms, Kluwer, Dordrecht, 2000.
15. Kuczma M., Choczewski B., Ger R., Iterative functional equations, Encyclopedia of Mathematics and its Applications 32, Cambridge University Press, Cambridge, 1990.
16. Kuhn N., A note on t-convex functions, in: General Inequalities, 4 (Oberwolfach, 1983) (W. Walter ed.), Internat. Ser. Numer. Math., vol. 71, Birkhäuser, Basel, 1984, pp. 269–276.
17. Levin V.I., Stechkin S.B., Inequalities, Amer. Math. Soc. Transl. (2) 14 (1960), 1–29.
18. Lewicki M., Olbryś A., On nonsymmetric t-convex functions, Math. Inequal. Appl. 17 (2014), no. 1, 95–100.
19. Nikodem K., Páles Zs., On t-convex functions, Real Anal. Exchange 29 (2003), no. 1, 219–228.
20. Shulman E., Group representations and stability of functional equations, J. London Math. Soc. 54 (1996), 111–120.
21. Sikorska J., Set-valued orthogonal additivity, Set-Valued Var. Anal. 23 (2015), 547–557.
22. Szostok T., Ohlin’s lemma and some inequalities of the Hermite-Hadamard type, Aequationes Math. 89 (2015), 915–926.
23. Veselý L., Zajiček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. 289 (1989), 52 pp.
Google Scholar