1. Atar R., Zeitouni O., Lyapunov exponents for finite-state nonlinear filtering, SIAM J. Control Optim. 35 (1997), 36–55.
2. Baxendale P., Chigansky P., Liptser R., Asymptotic stability of the Wonham filter: ergodic and nonergodic signals, Preprint 2002.
3. Borkar V.S., Ergodic control of partially observed Markov chains, Systems Control Lett. 34 (1998), 185–189.
4. Borkar V.S., Budhiraja A., A further remark on dynamic programming for partially observed Markov processes, Stochastic Process. Appl. 112 (2004), 79–93.
5. Di Masi G., Stettner L., Ergodicity of Hidden Markov Models, Math. Control Signals Systems 17 (2005), 269–296.
6. Di Masi G., Stettner L., Ergodicity of filtering process by vanishing discount approach, Systems Control Lett. 57 (2008), 150–157.
7. Di Masi G., Stettner L., Risk sensitive control of discrete time partially observed Markov processes with infinite horizon, Stochastics and Stochastics Rep. 67 (1999), 309–322.
8. Ikeda N., Watanabe Sh., Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.
9. Kaijser T., A limit theorem for partially observed Markov chains, Ann. Probab. 3 (1975), 677–696.
10. Kakutani S., Ergodic theorems and the Markoff processes with a stable distribution, Proc. Imp. Acad. Tokyo 16 (1940), 49–54.
11. Kallenberg O., Foundations of Modern Probability, Springer-Verlag, New York–Berlin, 1997.
12. Kunita H., Asymptotic behaviour of the nonlinear filtering errors of Markov process, J. Multivariate Anal. 1 (1971), 365–393.
13. Kunita H., Ergodic properties of nonlinear filtering processes , in: Spatial Stochastic Processes, ed. by Aleksander K.C., Watkins J.C., Progr. Probab. 19 , Birkhauser, Boston, 1991, pp. 233–256.
14. Liptser R., Shiryaev A.N., Statistics of Random Processes II. Applications, Second Edition, Springer-Verlag, New York–Berlin, 2001.
15. Liverani C., Decay of correlations, Ann. of Math. 142 (1995), 239–301.
16. Meyn S.P., Tweedie R.L., Markov Chains and Stochastics Stability, Springer-Verlag, New York–Berlin, 1993.
17. Ocone D., Pardoux E., Asymptotic stability of the optimal filter with respect to its initial conditions, SIAM J. Control Optim. 34 (1996), 226–243.
18. Runggaldier W., Stettner L., Approximations of Discrete Time Partially Observed Control Problems, Applied Mathematics Monographs CNR, Giardini Editori, Pisa, 1994.
19. Schäl M., Average Optimality in Dymanic Programming with General State Space, Math. Oper. Res. 18 (1993), 163–172.
20. Stettner L., On Invariant Measures of Filtering Processes , in: Proc. 4th Bad Honnef Conf. on Stochastic Differential Systems, ed. by Christopeit N., Helmes K., Kohlmann M., Lect. Notes in Control Inf. Sci. 126, Springer-Verlag, New York–Berlin, 1989, pp. 279–292.
21. Stettner L., Ergodic control of partially observed Markov processes with equivalent transition probabilities, Appl. Math. (Warsaw) 22 (1993), 25–38.
22. Tong X.T., van Handel R., Ergodicity and stability of the conditional distributions of nondegenerate Markov chains, Ann. Appl. Probab. 22 (2012), 1495–1540.
23. van Handel R., The stability of conditional Markov processes and Markov chains in random environments, Ann. Probab. 37 (2009), 1876–1925.
24. van Handel R., A nasty filtering problem, Preprint 2010, arXiv:1009.0507.
25. Yosida K., Functional Analysis, Springer-Verlag, New York–Berlin, 1978.
Google Scholar