M.W. Alomari, Some properties of h-MN-convexity and Jensen’s type inequalities, J . Interdiscip. Math. 22 (2019), no. 8, 1349–1395.
Google Scholar
A. Azócar, K. Nikodem, and G. Roa, Fejér-type inequalities for strongly convex functions, Ann. Math. Sil. 26 (2012), 43–54.
Google Scholar
M. Bombardelli and S. Varošanec, M_φM_ψ-convexity and separation theorems, J. Inequal. Appl. 2022 (2022), Paper No. 65, 7 pp.
Google Scholar
M. Bracamonte, J. Giménez, and J. Medina, Sandwich theorem for reciprocally strongly convex functions, Rev. Colombiana Mat. 52 (2018), no. 2, 171–184.
Google Scholar
A. El Farissi, Simple proof and refinement of Hermite–Hadamard inequality, J. Math. Inequal. 4 (2010), no. 3, 365–369.
Google Scholar
M. Feng, J. Ruan, and X. Ma, Hermite–Hadamard type inequalities for multidimensional strongly h-convex functions, Math. Inequal. Appl. 24 (2021), no. 4, 897–911.
Google Scholar
J.-B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of Convex Analysis, Springer-Verlag, Berlin, 2001.
Google Scholar
N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), no. 1-2, 193–199.
Google Scholar
F.C. Mitroi and C.I. Spiridon, Hermite–Hadamard type inequalities of convex functions with respect to a pair of quasi-arithmetic means, Math. Rep. (Bucur.) 14(64) (2012), no. 3, 91–295.
Google Scholar
C. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics, 23, Springer, New York, 2006.
Google Scholar
M.A. Noor, K.I. Noor, and S. Iftikhar, Hermite–Hadamard inequalities for strongly harmonic convex functions, J. Inequal. Spec. Funct. 7 (2016), no. 3, 99–113.
Google Scholar
B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restictions, Soviet Math. Dokl. 7 (1966), 72–75.
Google Scholar
T. Rajba and Sz. Wąsowicz, Probabilistic characterization of strong convexity, Opuscula Math. 31 (2011), no. 1, 97–103.
Google Scholar
S. Turhan, A.K. Demirel, S. Maden, and I. Iscan, Hermite–Hadamard type integral inequalities for strongly GA-convex functions, Proc. International Conference on Mathematics and Mathematics Education (ICMME 2018), Turk. J. Math. Comput. Sci. 10 (2018), 178–183.
Google Scholar
S. Turhan, A.K. Demirel, S. Maden, and I. Iscan, Hermite–Hadamard type integral inequalities for strongly p-convex functions, Proc. International Conference on Mathematics and Mathematics Education (ICMME 2018), Turk. J. Math. Comput. Sci. 10 (2018), 184–189.
Google Scholar
S. Turhan, M. Kunt, and İ. İşcan, Hermite–Hadamard type inequalities for M_φA-convex functions, International Journal of Mathematical Modelling & Computations 10 (2020), no. 1, 57–75.
Google Scholar
S. Turhan, S. Maden, A.K. Demirel, and I. Iscan, Hermite–Hadamard type inequality for M_φA-strongly convex functions, New Trends Math. Sci. 6 (2018), no. 4, 127–133.
Google Scholar
S. Varošanec, M_φA-h-convexity and Hermite–Hadamard type inequalities, Int. J. Anal. Appl. 20 (2022), Paper No. 36, 14 pp.
Google Scholar