B.P. Allahverdiev and H. Tuna, A representation of the resolvent operator of singular Hahn–Sturm–Liouville problem, Numer. Funct. Anal. Optim. 41 (2020), no. 4, 413–431.
Google Scholar
R.Kh. Amirov and A.S. Ozkan, Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary condition, Math. Phys. Anal. Geom. 17 (2014), no. 3–4, 483–491.
Google Scholar
M.H. Annaby, A.E. Hamza, and K.A. Aldwoah, Hahn difference operator and associated Jackson–Nörlund integrals, J. Optim. Theory Appl. 154 (2012), no. 1, 133–153.
Google Scholar
M.H. Annaby, A.E. Hamza, and S.D. Makharesh, A Sturm–Liouville theory for Hahn difference operator, in: M.Z. Nashed and X. Li (Eds.), Frontiers in Orthogonal Polynomials and q-Series, World Scientific, Singapore, 2018, pp. 35–83.
Google Scholar
M.H. Annaby, Z.S. Mansour, and I.A. Soliman, q-Titchmarsh–Weyl theory: series expansion, Nagoya Math. J. 205 (2012), 67–118.
Google Scholar
K. Aydemir, H. Olǧar, and O.Sh. Mukhtarov, The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problem, Turk. J. Math. Comput. Sci. 11 (2019), no. 2, 97–100.
Google Scholar
K. Aydemir, H. Olǧar, O.Sh. Mukhtarov, and F. Muhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat 32 (2018), no. 3, 921–931.
Google Scholar
F.A. Çetinkaya, A discontinuous q-fractional boundary value problem with eigenparameter dependent boundary conditions, Miskolc Math. Notes 20 (2019), no. 2, 795–806.
Google Scholar
Y. Guldu, R.Kh. Amirov, and N. Topsakal, On impulsive Sturm–Liouville operators with singularity and spectral parameter in boundary conditions, Ukrainian Math. J. 64 (2013), no. 12, 1816–1838.
Google Scholar
W. Hahn, Beitraäge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace–Transformation, Math. Nachr. 2 (1949), 340–379.
Google Scholar
W. Hahn, Ein Beitrag zur Theorie der Orthogonalpolynome, Monatsh. Math. 95 (1983), no. 1, 19–24.
Google Scholar
D. Karahan, On a q-analogue of the Sturm–Liouville operator with discontinuity conditions, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 26 (2022), no. 3, 407–418.
Google Scholar
D. Karahan and Kh.R. Mamedov, Sampling theory associated with q-Sturm–Liouville operator with discontinuity conditions, J. Contemp. Appl. Math. 10 (2020), no. 2, 40–48.
Google Scholar
D. Karahan and Kh.R. Mamedov, On a q-boundary value problem with discontinuity conditions, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 13 (2021), no. 4, 5–12.
Google Scholar
A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Dover Publications, New York, 1970.
Google Scholar
B.M. Levitan and I.S. Sargsjan, Sturm–Liouville and Dirac Operators, Math. Appl. (Soviet Ser.), 59, Kluwer Academic Publishers Group, Dordrecht, 1991.
Google Scholar
A.V. Likov and Yu.A. Mikhailov, The Theory of Heat and Mass Transfer (in Russian), Qosenerqoizdat, 1963.
Google Scholar
S. Mosazadeh, Spectral properties and a Parseval’s equality in the singular case for q-Dirac problem, Adv. Difference Equ. (2019), Paper No. 522, 14 pp. DOI: 10.1186/s13662-019-2464-y.
Google Scholar
O. Mukhtarov, H. Olǧar, and K. Aydemir, Eigenvalue problems with interface conditions, Konuralp J. Math. 8 (2020), no. 2, 284–286.
Google Scholar
M.A. Naimark, Linear Differential Operators, 2nd ed., Izdat. Nauka, Moscow, 1969; English transl. of 1st. ed., 1,2, New York, 1968.
Google Scholar
N. Palamut Kosar, On a spectral theory of singular Hahn difference equation of a Sturm–Liouville type problem with transmission conditions, Math. Methods Appl. Sci. 46 (2023), no. 9, 11099–11111.
Google Scholar
E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, Clarendon Press, Oxford, 1962.
Google Scholar
Y.P. Wang and H. Koyunbakan, On the Hochstadt–Lieberman theorem for discontinuous boundary-valued problems, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 6, 985–992.
Google Scholar
H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen, Math. Ann. 68 (1910), no. 2, 220–269.
Google Scholar