A. Björn, J. Björn, and A. Christensen, Poincaré inequalities and Ap weights on bowties, arXiv preprint, 2022. Available at arXiv: 2202.07491.
Google Scholar
D. Bresch, J. Lemoine, and F. Guíllen-Gonzalez, A note on a degenerate elliptic equation with applications for lakes and seas, Electron. J. Differential Equations (2004), No. 42, 13 pp.
Google Scholar
A.C. Cavalheiro, Existence of solutions for Dirichlet problem of some degenerate quasilinear elliptic equations, Complex Var. Elliptic Equ. 53 (2008), no. 2, 185–194.
Google Scholar
A.C. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian, Opuscula Math. 33 (2013), no. 3, 439–453.
Google Scholar
A.C. Cavalheiro, Weighted Sobolev Spaces and Degenerate Elliptic Equations, Cambridge Scholars Publishing, Newcastle upon Tyne, UK, 2023.
Google Scholar
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag, Berlin, 2009.
Google Scholar
M. Colombo, Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations. With Applications to the Vlasov-Poisson and Semigeostrophic Systems, Edizioni della Normale, Pisa, 2017.
Google Scholar
P. Drábek, A. Kufner, and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co., Berlin, 1997.
Google Scholar
E.B. Fabes, C.E. Kenig, and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116.
Google Scholar
J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam, 1985.
Google Scholar
J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, The Clarendon Press, Oxford University Press, New York, 1993.
Google Scholar
A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, Inc., New York, 1985.
Google Scholar
A. Kufner, O. John, and S. Fučik, Function Spaces, Noordhoff International Publishing, Leiden; Academia, Prague, 1977.
Google Scholar
A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin. 25 (1984), no. 3, 537–554.
Google Scholar
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
Google Scholar
B. Opic and A. Kufner, Hardy-Type Inequalities, Longman Scientific & Technical, Harlow, 1990.
Google Scholar
A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Inc., San Diego, 1986.
Google Scholar
B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.
Google Scholar
E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I, Springer-Verlag, Berlin, 1986.
Google Scholar
E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.II/B, Springer-Verlag, Berlin, 1990.
Google Scholar