1. Z. Boros and W. Fechner, An alternative equation for polynomial functions, Aequationes Math. 89 (2015), no. 1, 17–22.
2. Z. Boros, W. Fechner, and P. Kutas, A regularity condition for quadratic functions involving the unit circle, Publ. Math. Debrecen 89 (2016), no. 3, 297–306.
3. Z. Boros, M. Iqbal, and Á. Száz, A relational improvement of a true particular case of Fierro’s maximality theorem, manuscript.
4. H. Brass and G. Schmeisser, Error estimates for interpolatory quadrature formulae, Numer. Math. 37 (1981), no. 3, 371–386.
5. P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, 2004.
6. J. Chmieliński, On an ε-Birkhoff orthogonality, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Art. 79, 7 pp.
7. J. Chmieliński, T. Stypuła, and P. Wójcik, Approximate orthogonality in normed spaces and its applications, Linear Algebra Appl. 531 (2017), 305–317.
8. G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934, (first edition), 1952 (second edition).
9. M. Iqbal and Á. Száz, An instructive treatment of the Brézis–Browder ordering and maximality principles, manuscript.
10. E. Jabłonska, On locally bounded above solutions of an equation of the Gołąb-Schinzel type, Aequationes Math. 87 (2014), no. 1–2, 125–133.
11. Z. Kominek, L. Reich, and J. Schwaiger, On additive functions fulfilling some additional condition, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 35–42.
12. X.Z. Krasniqi, On α-convex sequences of higher order, J. Numer. Anal. Approx. Theory 45 (2016), no. 2, 177–182.
13. P. Kutas, Algebraic conditions for additive functions over the reals and over finite fields, Aequationes Math. 92 (2018), no. 3, 563–575.
14. A.S. Kushnir and O.V. Maslyuchenko, Pairs of Hahn and separately continuous functions with the given extremal sections, Bukovinian Math. Journal 9 (2021), no. 1, 210–229.
15. J. Morawiec and T. Zürcher, A new take on random interval homeomorphisms, Fund. Math. 257 (2022), no. 1, 1–17.
16. A. Olbryś, A support theorem for generalized convexity and its applications, J. Math. Anal. Appl. 458 (2018), no. 2, 1044–1058.
17. Z. Páles, P. Pasteczka, Decision making via generalized Bajraktarević means. Available at arXiv:2007.04870.
18. M. Plum, Existence and multiplicity proofs for semilinear elliptic boundary value problems by computer assistance, Jahresber. Deutsch. Math.-Verein. 110 (2008), no. 1, 19–54.
19. J. Sándor, On upper Hermite-Hadamard inequalities for geometric-convex and logconvex functions, Notes Number Theory Discrete Math. 20 (2014), no. 5, 25–30.
20. Á. Száz, Altman type generalizations of ordering and maximality principles of Brézis, Browder and Brøndsted, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 4, 595–620.
21. G.A. Voloshin, V.K. Maslyuchenko, and V.S. Mel’nik, Hahn’s pairs and zero inverse problem, Mat. Stud. 48 (2017), no. 1, 74–81.
22. P. Wójcik, Approximate orthogonality in normed spaces and its applications II, Linear Algebra Appl. 632 (2022), 258–267.
Google Scholar