1. MR791750 (87e:28008)
2. MR986915 (90c:28001)
3. MR1037927 (91c:39010)
4. Modern Real Analysis, editors: J. Hejduk, S. Kowalczyk, R. J. Pawlak, and M. Turowska, Dedicated to Professors Roman Ger, Jacek Jedrzejewski, Zygfryd Kominek, Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 2015.
5. A. Abian, The outer and inner measure of a non-measurable set, Boll. Un. Mat. Ital. (4) 3 (1970), 555–558.
6. K. Baron, M. Sablik, and P. Volkmann, On decent solutions of a functional congruence, Rocznik Nauk.-Dydakt. Akad. Pedagog. w Krakowie, Prace Mat. 17 (2000), 27–40.
7. R. Ger, M. Kuczma, On the boundedness and continuity of convex functions and additive functions, Aequationes Math. 4 (1970), 157–162.
8. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
9. D.H. Hyers, S. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292.
10. R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269–272.
11. M.E. Kuczma, On discontinuous additive functions, Fund. Math. 66 (1970), 383–392.
12. M.E. Kuczma and M. Kuczma, An elementary proof and an extension of a theorem of Steinhaus, Glasnik Mat. Ser. III 6(26) (1971), 11–18.
13. M. Kuczma, On some set classes occurring in the theory of convex functions, Comment. Math. 17 (1973), 127–135.
14. M. Kuczma and J. Smítal, On measures connected with the Cauchy equation, Aequationes Math. 14 (1976), 421–428.
15. N. Kuhn, A note on t-convex functions, in: W. Walter (ed.), General Inequalities, 4, Oberwolfach, 1983, Internat. Ser. Numer. Math., vol. 71, Birkhäuser Verlag, Basel-Boston, 1984, pp. 269–276.
16. Gy. Maksa, On the alienation of the logarithmic and exponential Cauchy equations, Aequationes Math. 92 (2018), 543–547.
17. H.I. Miller, An incompatibility result, Rev. Roumaine Math. Pures Appl. 26 (1981), 1217–1220.
18. C.T. Ng, Functions generating Schur-convex sums, in: W. Walter (ed.), General Inequalities, 5, Oberwolfach, 1986, Internat. Ser. Numer. Math., vol. 80, Birkhäuser Verlag, Basel-Boston, 1987, pp. 433–438.
19. A. Olbryś, A support theorem for generalized convexity and its applications, J. Math. Anal. Appl. 458 (2018), 1044–1058.
20. W. Orlicz and Z. Ciesielski, Some remarks on the convergence of functionals on bases, Studia Math. 16 (1958), 335–352.
21. S. Piccard, Sur les ensembles parfaits, Mém. Univ. Neuchâtel, vol. 16, Secrétariat de l’Université, Neuchâtel, 1942, 172 pp.
22. Report of Meeting, Aequationes Math. 91 (2017), 1157–1204.
23. G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474–481.
24. W. Sander, Verallgemeinerungen eines Satzes von S. Piccard, Manuscripta Math. 16 (1975), 11–25.
25. W. Sander, Verallgemeinerungen eines Satzes von H. Steinhaus, Manuscripta Math. 18 (1976), 25–42.
26. F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.
27. J. Tabor, Hosszú functional equation on the unit interval is not stable, Publ. Math. Debrecen 49 (1996), 335–340.
28. W. Wilczyński, Theorems of H. Steinhaus, S. Piccard and J. Smítal, Lecture during the Ger-Kominek Workshop in Mathematical Analysis and Real Functions. Katowice, Silesian University, November 20–21, 2015.
Google Scholar